发布网友 发布时间:19小时前
共2个回答
热心网友 时间:19小时前
Matlab上有CANNY算子的库函数啊,直接调用就行了。
我这有VC++的边缘检测算法,很长的。稍微改一下就可以用在Matlab上。
/ 一维高斯分布函数,用于平滑函数中生成的高斯滤波系数
void CFunction::CreatGauss(double sigma, double **pdKernel, int *pnWidowSize)
{
LONG i;
//数组中心点
int nCenter;
//数组中一点到中心点距离
double dDis;
//中间变量
double dValue;
double dSum;
dSum = 0;
// [-3*sigma,3*sigma] 以内数据,会覆盖绝大部分滤波系数
*pnWidowSize = 1+ 2*ceil(3*sigma);
nCenter = (*pnWidowSize)/2;
*pdKernel = new double[*pnWidowSize];
//生成高斯数据
for(i=0;i<(*pnWidowSize);i++)
{
dDis = (double)(i - nCenter);
dValue = exp(-(1/2)*dDis*dDis/(sigma*sigma))/(sqrt(2*3.1415926)*sigma);
(*pdKernel)[i] = dValue;
dSum+=dValue;
}
//归一化
for(i=0;i<(*pnWidowSize);i++)
{
(*pdKernel)[i]/=dSum;
}
}
//用高斯滤波器平滑原图像
void CFunction::GaussianSmooth(SIZE sz, LPBYTE pGray, LPBYTE pResult, double sigma)
{
LONG x, y;
LONG i;
//高斯滤波器长度
int nWindowSize;
//窗口长度
int nLen;
//一维高斯滤波器
double *pdKernel;
//高斯系数与图像数据的点乘
double dDotMul;
//滤波系数总和
double dWeightSum;
double *pdTemp;
pdTemp = new double[sz.cx*sz.cy];
//产生一维高斯数据
CreatGauss(sigma, &pdKernel, &nWindowSize);
nLen = nWindowSize/2;
//x方向滤波
for(y=0;y<sz.cy;y++)
{
for(x=0;x<sz.cx;x++)
{
dDotMul = 0;
dWeightSum = 0;
for(i=(-nLen);i<=nLen;i++)
{
//判断是否在图像内部
if((i+x)>=0 && (i+x)<sz.cx)
{
dDotMul+=(double)pGray[y*sz.cx+(i+x)] * pdKernel[nLen+i];
dWeightSum += pdKernel[nLen+i];
}
}
pdTemp[y*sz.cx+x] = dDotMul/dWeightSum;
}
}
//y方向滤波
for(x=0; x<sz.cx;x++)
{
for(y=0; y<sz.cy; y++)
{
dDotMul = 0;
dWeightSum = 0;
for(i=(-nLen);i<=nLen;i++)
{
if((i+y)>=0 && (i+y)< sz.cy)
{
dDotMul += (double)pdTemp[(y+i)*sz.cx+x]*pdKernel[nLen+i];
dWeightSum += pdKernel[nLen+i];
}
}
pResult[y*sz.cx+x] = (unsigned char)(int)dDotMul/dWeightSum;
}
}
delete []pdKernel;
pdKernel = NULL;
delete []pdTemp;
pdTemp = NULL;
}
// 方向导数,求梯度
void CFunction::Grad(SIZE sz, LPBYTE pGray,int *pGradX, int *pGradY, int *pMag)
{
LONG y,x;
//x方向的方向导数
for(y=1;y<sz.cy-1;y++)
{
for(x=1;x<sz.cx-1;x++)
{
pGradX[y*sz.cx +x] = (int)( pGray[y*sz.cx+x+1]-pGray[y*sz.cx+ x-1] );
}
}
//y方向方向导数
for(x=1;x<sz.cx-1;x++)
{
for(y=1;y<sz.cy-1;y++)
{
pGradY[y*sz.cx +x] = (int)(pGray[(y+1)*sz.cx +x] - pGray[(y-1)*sz.cx +x]);
}
}
//求梯度
//中间变量
double dSqt1;
double dSqt2;
for(y=0; y<sz.cy; y++)
{
for(x=0; x<sz.cx; x++)
{ //二阶范数求梯度
dSqt1 = pGradX[y*sz.cx + x]*pGradX[y*sz.cx + x];
dSqt2 = pGradY[y*sz.cx + x]*pGradY[y*sz.cx + x];
pMag[y*sz.cx+x] = (int)(sqrt(dSqt1+dSqt2)+0.5);
}
}
}
//非最大抑制
void CFunction::NonmaxSuppress(int *pMag, int *pGradX, int *pGradY, SIZE sz, LPBYTE pNSRst)
{
LONG y,x;
int nPos;
//梯度分量
int gx;
int gy;
//中间变量
int g1,g2,g3,g4;
double weight;
double dTmp,dTmp1,dTmp2;
//设置图像边缘为不可能的分界点
for(x=0;x<sz.cx;x++)
{
pNSRst[x] = 0;
//pNSRst[(sz.cy-1)*sz.cx+x] = 0;
pNSRst[sz.cy-1+x] = 0;
}
for(y=0;y<sz.cy;y++)
{
pNSRst[y*sz.cx] = 0;
pNSRst[y*sz.cx + sz.cx-1] = 0;
}
for(y=1;y<sz.cy-1;y++)
{
for(x=1;x<sz.cx-1;x++)
{ //当前点
nPos = y*sz.cx + x;
//如果当前像素梯度幅度为0,则不是边界点
if(pMag[nPos] == 0)
{
pNSRst[nPos] = 0;
}
else
{ //当前点的梯度幅度
dTmp = pMag[nPos];
//x,y方向导数
gx = pGradX[nPos];
gy = pGradY[nPos];
//如果方向导数y分量比x分量大,说明导数方向趋向于y分量
if(abs(gy) > abs(gx))
{
//计算插值比例
weight = fabs(gx)/fabs(gy);
g2 = pMag[nPos-sz.cx];
g4 = pMag[nPos+sz.cx];
//如果x,y两个方向导数的符号相同
//C 为当前像素,与g1-g4 的位置关系为:
//g1 g2
// C
// g4 g3
if(gx*gy>0)
{
g1 = pMag[nPos-sz.cx-1];
g3 = pMag[nPos+sz.cx+1];
}
//如果x,y两个方向的方向导数方向相反
//C是当前像素,与g1-g4的关系为:
// g2 g1
// C
// g3 g4
else
{
g1 = pMag[nPos-sz.cx+1];
g3 = pMag[nPos+sz.cx-1];
}
}
//如果方向导数x分量比y分量大,说明导数的方向趋向于x分量
else
{
//插值比例
weight = fabs(gy)/fabs(gx);
g2 = pMag[nPos+1];
g4 = pMag[nPos-1];
//如果x,y两个方向的方向导数符号相同
//当前像素C与 g1-g4的关系为
// g3
// g4 C g2
// g1
if(gx * gy > 0)
{
g1 = pMag[nPos+sz.cx+1];
g3 = pMag[nPos-sz.cx-1];
}
//如果x,y两个方向导数的方向相反
// C与g1-g4的关系为
// g1
// g4 C g2
// g3
else
{
g1 = pMag[nPos-sz.cx+1];
g3 = pMag[nPos+sz.cx-1];
}
}
//利用 g1-g4 对梯度进行插值
{
dTmp1 = weight*g1 + (1-weight)*g2;
dTmp2 = weight*g3 + (1-weight)*g4;
//当前像素的梯度是局部的最大值
//该点可能是边界点
if(dTmp>=dTmp1 && dTmp>=dTmp2)
{
pNSRst[nPos] = 128;
}
else
{
//不可能是边界点
pNSRst[nPos] = 0;
}
}
}
}
}
}
// 统计pMag的直方图,判定阈值
void CFunction::EstimateThreshold(int *pMag, SIZE sz, int *pThrHigh, int *pThrLow, LPBYTE pGray,
double dRatHigh, double dRatLow)
{
LONG y,x,k;
//该数组的大小和梯度值的范围有关,如果采用本程序的算法
//那么梯度的范围不会超过pow(2,10)
int nHist[1024];
//可能边界数
int nEdgeNum;
//最大梯度数
int nMaxMag;
int nHighCount;
nMaxMag = 0;
//初始化
for(k=0;k<1024;k++)
{
nHist[k] = 0;
}
//统计直方图,利用直方图计算阈值
for(y=0;y<sz.cy;y++)
{
for(x=0;x<sz.cx;x++)
{
if(pGray[y*sz.cx+x]==128)
{
nHist[pMag[y*sz.cx+x]]++;
}
}
}
nEdgeNum = nHist[0];
nMaxMag = 0;
//统计经过“非最大值抑制”后有多少像素
for(k=1;k<1024;k++)
{
if(nHist[k] != 0)
{
nMaxMag = k;
}
//梯度为0的点是不可能为边界点的
//经过non-maximum suppression后有多少像素
nEdgeNum += nHist[k];
}
//梯度比高阈值*pThrHigh 小的像素点总书目
nHighCount = (int)(dRatHigh * nEdgeNum + 0.5);
k=1;
nEdgeNum = nHist[1];
//计算高阈值
while((k<(nMaxMag-1)) && (nEdgeNum < nHighCount))
{
k++;
nEdgeNum += nHist[k];
}
*pThrHigh = k;
//低阈值
*pThrLow = (int)((*pThrHigh) * dRatLow + 0.5);
}
//利用函数寻找边界起点
void CFunction::Hysteresis(int *pMag, SIZE sz, double dRatLow, double dRatHigh, LPBYTE pResult)
{
LONG y,x;
int nThrHigh,nThrLow;
int nPos;
//估计TraceEdge 函数需要的低阈值,以及Hysteresis函数使用的高阈值
EstimateThreshold(pMag, sz,&nThrHigh,&nThrLow,pResult,dRatHigh,dRatLow);
//寻找大于dThrHigh的点,这些点用来当作边界点,
//然后用TraceEdge函数跟踪该点对应的边界
for(y=0;y<sz.cy;y++)
{
for(x=0;x<sz.cx;x++)
{
nPos = y*sz.cx + x;
//如果该像素是可能的边界点,并且梯度大于高阈值,
//该像素作为一个边界的起点
if((pResult[nPos]==128) && (pMag[nPos] >= nThrHigh))
{
//设置该点为边界点
pResult[nPos] = 255;
TraceEdge(y,x,nThrLow,pResult,pMag,sz);
}
}
}
//其他点已经不可能为边界点
for(y=0;y<sz.cy;y++)
{
for(x=0;x<sz.cx;x++)
{
nPos = y*sz.cx + x;
if(pResult[nPos] != 255)
{
pResult[nPos] = 0;
}
}
}
}
//根据Hysteresis 执行的结果,从一个像素点开始搜索,搜索以该像素点为边界起点的一条边界的
//一条边界的所有边界点,函数采用了递归算法
// 从(x,y)坐标出发,进行边界点的跟踪,跟踪只考虑pResult中没有处理并且可能是边界
// 点的像素(=128),像素值为0表明该点不可能是边界点,像素值为255表明该点已经是边界点
void CFunction::TraceEdge(int y, int x, int nThrLow, LPBYTE pResult, int *pMag, SIZE sz)
{
//对8邻域像素进行查询
int xNum[8] = {1,1,0,-1,-1,-1,0,1};
int yNum[8] = {0,1,1,1,0,-1,-1,-1};
LONG yy,xx,k; //循环变量
for(k=0;k<8;k++)
{
yy = y+yNum[k];
xx = x+xNum[k];
if(pResult[0 * (479 - yy)+xx]==128 && pMag[0 * (479 - yy)+xx]>=nThrLow )
{
//该点设为边界点
pResult[0 * (479 - yy)+xx] = 255;
//以该点为中心再进行跟踪
TraceEdge(yy,xx,nThrLow,pResult,pMag,sz);
}
}
}
// Canny算子
BOOL CFunction::Canny(LPBYTE m_pDibData,CPoint ptLeft, CPoint ptRight , double sigma, double dRatLow, double dRatHigh)
{
BYTE* m_Newdata;//每一步处理后的图像数据
m_Newdata = (BYTE*)malloc(maxImage);
memcpy(m_Newdata,(BYTE *)m_pDibData,maxImage);
//经过抑制局部像素非最大值的处理后的数据
BYTE* pResult;//每一步处理后的图像数据
pResult = (BYTE*)malloc(maxImage);
memcpy(pResult,(BYTE *)m_pDibData,maxImage);
int pointy,pointx,m,n,i=0;
long Position;
int GradHori;
int GradVert;
//存储结构元素的数组
BYTE array[9]={0};
//设定两个阈值
int nThrHigh,nThrLow;
//梯度分量
int gx;
int gy;
//中间变量
int g1,g2,g3,g4;
double weight;
double dTmp,dTmp1,dTmp2;
int Width,Higth;
Width=ptRight.x-ptLeft.x+1;
Higth=ptRight.y-ptLeft.y+1;
CSize sz=CSize(Width,Higth);
//x方向导数的指针
int *pGradX= new int[maxImage];
memset(pGradX,0,maxImage);
//y方向
int *pGradY;
pGradY = new int [maxImage];
memset(pGradY,0,maxImage);
//梯度的幅度
int *pGradMag;
pGradMag = new int [maxImage];
//对pGradMag进行初始化
for (pointy = 0;pointy <480;pointy++)
{
for (pointx = 0;pointx <0 ;pointx++)
{
Position=0 * (479 - pointy)+pointx;
pGradMag[Position]=m_pDibData[Position];
}
}
//第一步进行高斯平滑器滤波
//进入循环,使用3*3的结构元素,处理除去第一行和最后一行以及第一列和最后一列。
for (pointy = ptLeft.y+1;pointy <= ptRight.y-1;pointy++)
{
for (pointx = ptLeft.x+1;pointx <= ptRight.x-1;pointx++)
{
Position=0 * (479 - pointy)+pointx;
for (m = 0;m < 3;m++)
{
for (n = 0;n < 3;n++)
{
array[m*3+n]=m_pDibData[Position+0*(1-m)+n-1];
}
}
GradHori=abs(array[0]+2*array[1]+array[2]+2*array[3]+4*array[4]+2*array[5]+array[6]+2*array[7]+array[8]);
GradHori=(int)(0.0625*GradHori+0.5);
if (GradHori>255)
{
m_Newdata[Position]=255;
}
else
m_Newdata[Position]=GradHori;
}
}
//第二步用一阶偏导的有限差分来计算梯度的幅值和方向
//x方向的方向导数
for (pointy = ptLeft.y+1;pointy <= ptRight.y-1;pointy++)
{
for (pointx = ptLeft.x+1;pointx <= ptRight.x-1;pointx++)
{
pGradX[pointy*Width +pointx]=(int)(m_Newdata[pointy*Width +pointx+1]- m_Newdata[pointy*Width +pointx-1] );
}
}
//y方向方向导数
for (pointx = ptLeft.x+1;pointx <= ptRight.x-1;pointx++)
{
for (pointy = ptLeft.y+1;pointy <= ptRight.y-1;pointy++)
{
pGradY[pointy*Width +pointx] = (int)(m_Newdata[(pointy+1)*Width +pointx] - m_Newdata[(pointy-1)*Width +pointx]);
}
}
//求梯度
for (pointy = ptLeft.y+1;pointy <= ptRight.y-1;pointy++)
{
for (pointx = ptLeft.x+1;pointx <= ptRight.x-1;pointx++)
{
Position=0 * (479 - pointy)+pointx;
for (m = 0;m < 3;m++)
{
for (n = 0;n < 3;n++)
{
array[m*3+n]=m_Newdata[Position+0*(1-m)+n-1];
}
}
GradHori=abs((-1)*array[0]+(-2)*array[3]+2*array[7]+array[8]);
GradVert=abs((-1)*array[0]-2*array[1]+2*array[5]+array[8]);
GradHori =(int)((float)sqrt(pow(GradHori,2)+pow(GradVert,2))+0.5);
pGradMag[Position]=GradHori;
}
}
//针对第一行的像素点及最后一行的像素点
for (pointx = ptLeft.x;pointx <= ptRight.x;pointx++)
{
Position=0 * (479 - ptLeft.y)+pointx;
pGradMag[Position]=0;
Position=0 * (479 - ptRight.y)+pointx;
pGradMag[Position]=0;
}
//针对第一列以及最后一列的像素点
for (pointy = ptLeft.y+1;pointy <= ptRight.y-1;pointy++)
{
Position=0 * (479 - pointy)+ptLeft.x;
pGradMag[Position]=0;
Position=0 * (479 - pointy)+ptRight.x;
pGradMag[Position]=0;
}
//第三步进行抑制梯度图中的非局部极值点的像素
for (pointy = ptLeft.y+1;pointy <= ptRight.y-1;pointy++)
{
for (pointx = ptLeft.x+1;pointx <= ptRight.x-1;pointx++)
{ //当前点
Position=0 * (479 - pointy)+pointx;
//如果当前像素梯度幅度为0,则不是边界点
if(pGradMag[Position] == 0)
{
pGradMag[Position] = 0;
}
else
{ //当前点的梯度幅度
dTmp = pGradMag[Position];
//x,y方向导数
gx = pGradX[Position];
gy = pGradY[Position];
//如果方向导数y分量比x分量大,说明导数方向趋向于y分量
if(abs(gy) > abs(gx))
{
//计算插值比例
weight = fabs(gx)/fabs(gy);
g2 = pGradMag[Position-0];
g4 = pGradMag[Position+0];
//如果x,y两个方向导数的符号相同
//C 为当前像素,与g1-g4 的位置关系为:
//g1 g2
// C
// g4 g3
if(gx*gy>0)
{
g1 = pGradMag[Position-0-1];
g3 = pGradMag[Position+0+1];
}
//如果x,y两个方向的方向导数方向相反
//C是当前像素,与g1-g4的关系为:
// g2 g1
// C
// g3 g4
else
{
g1 = pGradMag[Position-0+1];
g3 = pGradMag[Position+0-1];
}
}
//如果方向导数x分量比y分量大,说明导数的方向趋向于x分量
else
{
//插值比例
weight = fabs(gy)/fabs(gx);
g2 = pGradMag[Position+1];
g4 = pGradMag[Position-1];
//如果x,y两个方向的方向导数符号相同
//当前像素C与 g1-g4的关系为
// g3
// g4 C g2
// g1
if(gx * gy > 0)
{
g1 = pGradMag[Position+0+1];
g3 = pGradMag[Position-0-1];
}
//如果x,y两个方向导数的方向相反
// C与g1-g4的关系为
// g1
// g4 C g2
// g3
else
{
g1 =pGradMag[Position-0+1];
g3 =pGradMag[Position+0-1];
}
}
//利用 g1-g4 对梯度进行插值
{
dTmp1 = weight*g1 + (1-weight)*g2;
dTmp2 = weight*g3 + (1-weight)*g4;
//当前像素的梯度是局部的最大值
//该点可能是边界点
if(dTmp>=dTmp1 && dTmp>=dTmp2)
{
pResult[Position] = 128;
}
else
{
//不可能是边界点
pResult[Position] = 0;
}
}
}
}
}
//第四步根据梯度计算及经过非最大值得印制后的结果设定阈值
//估计TraceEdge 函数需要的低阈值,函数使用的高阈值
EstimateThreshold(pGradMag, sz,&nThrHigh,&nThrLow,pResult,dRatHigh,dRatLow);
//寻找大于dThrHigh的点,这些点用来当作边界点,
//然后用TraceEdge函数跟踪该点对应的边界
for (pointy = ptLeft.y+1;pointy <= ptRight.y-1;pointy++)
{
for (pointx = ptLeft.x+1;pointx <= ptRight.x-1;pointx++)
{
Position=0 * (479 - pointy)+pointx;
//如果该像素是可能的边界点,并且梯度大于高阈值,
//该像素作为一个边界的起点
if((pResult[Position]==128) && (pGradMag[Position] >= nThrHigh))
{
//设置该点为边界点
pResult[Position] = 255;
TraceEdge(pointy,pointx,nThrLow,pResult,pGradMag,sz);
}
}
}
//其他点已经不可能为边界点
for (pointy = ptLeft.y+1;pointy <= ptRight.y-1;pointy++)
{
for (pointx = ptLeft.x+1;pointx <= ptRight.x-1;pointx++)
{
Position=0 * (479 - pointy)+pointx;
if(pResult[Position] != 255)
{
pResult[Position] = 0;
}
}
}
//计算方向导数和梯度的幅度
// Grad(sz,pGaussSmooth,pGradX,pGradY,pGradMag);
//应用非最大抑制
// NonmaxSuppress(pGradMag,pGradX,pGradY,sz,pResult);
//应用Hysteresis,找到所有边界
// Hysteresis(pGradMag,sz,dRatLow,dRatHigh,pResult);
memcpy(m_pDibData,(BYTE *)pResult,maxImage);
delete[] pResult;
pResult = NULL;
delete[] pGradX;
pGradX = NULL;
delete[] pGradY;
pGradY = NULL;
delete[] pGradMag;
pGradMag = NULL;
delete[] m_Newdata;
m_Newdata = NULL;
return true;
}
热心网友 时间:19小时前
M=imread('');%读入你的图片
BW = edge(I,'canny');%边缘检测函数
imshow(BW) %显示检测后的图象