发布网友 发布时间:2024-10-24 09:47
共1个回答
热心网友 时间:2024-10-29 21:25
(1)过点P作PM⊥BC于M,则四边形PDCM为矩形.
∴PM=DC=12,
∵QB=16-t,
∴s=12QB?PM=12(16-t)×12=96-6t(0≤t<16).
(2)当四边形ABQP是平行四边形时,AP=BQ,
即21-2t=16-t,
解得:t=5,
∴当t=5时,四边形ABQP是平行四边形.
(3)由图可知,CM=PD=2t,CQ=t,若以B、P、Q为顶点的三角形是等腰三角形,可以分三种情况:
①若PQ=BQ,在Rt△PMQ中,PQ2=t2+122,由PQ2=BQ2得t2+122=(16-t)2,解得t=72;
②若BP=BQ,在Rt△PMB中,PB2=(16-2t)2+122,由PB2=BQ2得(16-2t)2+122=(16-t)2,即3t2-32t+144=0,
此时,△=(-32)2-4×3×144=-704<0,
所以此方程无解,∴BP≠BQ.
③若PB=PQ,由PB2=PQ2得t2+122=(16-2t)2+122得t1=163,t2=16(不合题意,舍去).
综上所述,当t=72或t=163时,以B,P,Q三点为顶点的三角形是等腰三角形.