点o是等边三角形ABC的重心,连接OA,OB,OC。作OB,OC的垂直平分线分别交BC...

发布网友 发布时间:2024-10-24 04:00

我来回答

2个回答

热心网友 时间:2024-10-30 06:25

重心是中线的交点

 

边AO,交BC于G

 

等边三角形ABC

G是中点

所以AG垂直BC

所以OB=OC(中垂线上的点到两个端点的距离相等)

 

 

不知道你题目全没全,此题可得:

BM=CN

∠MBE=∠NCF

∠BME=∠CNF=90°

△BEM≌△CFN

所以BE=CF

热心网友 时间:2024-10-30 06:23

∵O是重心;
∵是等边三角形
∴AG是BC的中垂线
∴BO=CO
(2)链接OE、OF
∵ME和NF分别为BO和CO中垂线
∴OE=BE;OF=CF;
∵OB=OC
∴OE=BE=OF=CF;
∴∠EOF=60°
∴ΔEOF为等边三角形
∴)OE=OF=EF=BE=CF;
∴E、F为三等分点

声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com