发布网友 发布时间:2024-10-18 21:46
共1个回答
热心网友 时间:2分钟前
解:由部分图像的:A=1, T/4=2π/3-π/6=π/2.
T=2π, ω=2π/T=2π/2π=1.
∴ f(x)=sin(x+φ)
∵图像的一个对称轴为x=π/6, 由正弦函数的对称轴方程,德:
π/6+φ=kπ+π/2.
φ=kπ+π/2-π/6.
==kπ+π/3.
∵-π≤φ≤π/2, ∴取k=0,∴得φ=π/3.
(1) ∴所求函数的表达式为:f(x)=sin(x+π/3).
(2) f(α)=sin(x+π/3)=3/5, cos(α+π/3)=±√[1-sin^2(α+π/3)]=±4/5√
∵-π/6≤α≤π/6, ∴cos(α+π/3)>0,
∴ cos(α+π/3)=4/5.
∴ sinα=sin(α+π/3-π/3).
=sin(α+π/3)cosπ/3-cos(α+π/3)sinπ/3.
=(3/5)*(1/2)-(4/5)*(√3/2).
∴ sinα=(3-4√3)/10.