发布网友 发布时间:2024-10-18 19:47
共1个回答
热心网友 时间:6分钟前
方法一:f(x)=(ax+1)/(x+2)=[a(x+2)-2a+1]/(x+2)=a+(1-2a)/(x+2).令,Y=1/(x+2),而此函数,在x∈(-2,+∞)上为减函数,现要使Y=(1-2a)/(x+2),在x∈(-2,+∞)上为增函数,则须满足(1-2a)<0,a>1/2.即,函数f(x)=(ax+1)/(x+2)在区间(-2,+∞)上为增函数,则a的取值范围是:a>1/2.方法二:对f(x)求导,f(x)=(ax+1)/(x+2),f'(x)=[(ax+1)'(x+2)-(x+2)'(ax+1)]/(x+2)^2=(2a-1)/(x+2)^2.要使f(x)在区间X∈(-2,+∞)上为增函数,则f'(x)>0,即,(2a-1)/(x+2)^2>0,(2a-1)>0,a>1/2.则a的取值范围是:a>1/2.