发布网友 发布时间:2024-10-18 20:17
共2个回答
热心网友 时间:2024-11-19 20:35
1)f(x1)=lgx1
f(x2)=lgx2
2)[f(x1)+f(x2)]/2=(lgx1+lgx2)/2=(lgx1x2)/2
3)x=(x1+x2)/2
f[(x1+x 2)/2]=lg[(x1+x2)/2]
4)[f(x1)+f(x2)]/2-f[(x1+x 2)/2]
=(lgx1x2)/2-lg[(x1+x2)/2]
=lg[(x1x2)^1/2]-lg[(x1+x2)/2]
5)lgx为增函数,所以只需比较
(x1x2)^1/2-(x1+x2)/2<=(x1x2)^1/2-[2(x1x2)^1/2]/2<=0 (x1,x2∈(0,+∞))
6)所以[f(x1)+f(x2)]/2<=f[(x1+x 2)/2]
热心网友 时间:2024-11-19 20:36
[f(x1)+f(x2)]/2=(lgx1+lgx2)/2=
[lg(x1*x2)]/2=lg根号下x1*x2
f[(x1+x2)/2]=lg[(x1+x2)/2]
x1,x2属于(0,正无穷)
所以(x1+x2)/2大于等于根号下x1*x2
又因为lgx增函数
所以f[(x1+x2)/2]大于等于[f(x1)+f(x2)]/2