三角函数2倍角公式是什么

发布网友 发布时间:2024-10-23 04:08

我来回答

1个回答

热心网友 时间:2024-10-24 07:06

三角函数二倍角公式有:正弦二倍角公式sin2A=2sinAcosA、余弦二倍角公式cos2a=(cosa)^2-(sina)^2=2(cosa)^2-1=1-2(sina)^2以及正切二倍角公式tan2A=2tanA/[1-(tanA)^2]。

二倍角公式是数学三角函数中常用的一组公式,通过角α的三角函数值的一些变换关系来表示其二倍角2α的三角函数值,二倍角公式包括正弦二倍角公式、余弦二倍角公式以及正切二倍角公式。在计算中可以用来化简计算式、减少求三角函数的次数,在工程中也有广泛的运用。

一、正弦二倍角公式

sin2A=2sinAcosA

推导过程

sin2A= sin(A+A)=sinAcosA +CosAsinA =2sinAcosA

二、余弦二倍角公式

cos2a=(cosa)^2-(sina)^2=2(cosa)^2-1=1-2(sina)^2

余弦二倍角公式有三组表示形式,三组形式等价

1.Cos2a=Cosa^2-sina^2=[1-tana^2]/[1+tana^2]

2.Cos2a=1-2Sina^2

3.Cos2a=2Cosa^2-1

推导过程

cos2A=cos(A+A)=cosAcOsA-sinAsinA=cos2A-sin2A=2cos2A-1=1-2sin2A

还可以变形为(降幂,升角)

sin^2α = (1 -cos2α) /2;

cos^2α =(1 + cos2α)/2。

三、正切二倍角公式

tan2A=2tanA/[1-(tanA)^2]

推导过程

tan(2a)=tan(a+a)=(tan(a)+tan(a))/(1-tan(a)*tan(a))=2tan a /(1-tan2 a )

求证tan(α/2)=sinα/(1+cosα)=(1 - cosα)/sinα

tan(α/2)

=sin(α/2) / cos(α/2)

=sin²(α/2) / sin(α/2)cos(α/2)

=2sin²(α/2) / 2sin(α/2)cos(α/2)

=2sin²(α/2) / sinα (正弦二倍角公式)

=[2 - 2cos²(α/2)] / sinα

=[1 + 1-2cos²(α/2)] / sinα

=(1 - cosα) / sinα (余弦二倍角公式)

=(1 - cosα)(1 + cosα) / sinα(1 + cosα)

=sin²α / sinα(1 + cosα)

=sinα / (1 + cosα)




三角函数的三倍角公式

sin3A=4sinAsin(π/3+A)sin(π/3-A)

cos3A=4cosAcos(π/3+A)cos(π/3-A)

tan3A=tanAtan(π/3+A)*tan(π/3-A)

三角函数的四倍角公式

sin4A=-4(cosA*sinA*(2*sinA^2-1))

cos4A=1-8cosA^2+8*cosA^4)

tan4A=(4tanA-4*tanA^3)/(1-6tanA^2+tanA^4)

声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com