您的当前位置:首页正文

xlnxdx的不定积分推导过程

2023-09-10 来源:意榕旅游网

xlnxdx的不定积分推导过程

∫xlnxdx=(1/2)x²lnx-(1/4)x²+C(C为积分常数)。

解答过程如下:

∫xlnxdx

=(1/2)∫lnxd(x²)

=(1/2)x²lnx-(1/2)∫x²*(1/x)dx

=(1/2)x²lnx-(1/2)∫xdx

=(1/2)x²lnx-(1/4)x²+C

不定积分的公式:

1、∫adx=ax+C,a和C都是常数

2、∫x^adx=[x^(a+1)]/(a+1)+C,其中a为常数且a≠-1

3、∫1/xdx=ln|x|+C

4、∫a^xdx=(1/lna)a^x+C,其中a>0且a≠1

5、∫e^xdx=e^x+C

6、∫cosxdx=sinx+C

7、∫sinxdx=-cosx+C

8、∫cotxdx=ln|sinx|+C=-ln|cscx|+C

显示全文