一、确定物体位置的方法:
1、先找观测点;
2、再定方向(看方向夹角的度数);
3、最后确定距离(看比例尺)
二、描绘路线图的关键是选好观测点,建立方向标,确定方向和路程。
三、位置关系的相对性:
两地的位置具有相对性在叙述两地的位置关系时,观测点不同,叙述的方向正好相反,而度数和距离正好相等。
四、相对位置:东--西;南--北;南偏东--北偏西。
第三单元分数除法
1、倒数的意义:乘积是1的两个数互为倒数。
强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。 (要说清谁是谁的倒数)。
2、求倒数的方法:
(1)、求分数的倒数:交换分子分母的位置。
(2)、求整数的倒数:把整数看做分母是1的分数,再交换分子分母的位置。
(3)、求带分数的倒数:把带分数化为假分数,再求倒数。
(4)、求小数的倒数:把小数化为分数,再求倒数。
3、1的倒数是1;因为1×1=1;0没有倒数,因为0乘任何数都得0,(分母不能为0) X k B 1 . c o m
4、真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。
5、运用,a×=b×求a和b是多少。把a×=b×看成等于1,也就是求的倒数和求的倒数。
1、分数除法的意义:
乘法:因数×因数=积
除法:积÷一个因数=另一个因数
分数除法与整数除法的意义相同,表示已知两个因数的积和其中一个因数,求另一个因数的运算。
例如:÷意义是:已知两个因数的积是与其中一个因数,求另一个因数的运算。
2、分数除法的计算法则:
除以一个不为0的数,等于乘这个数的倒数。
3、分数除法比较大小时的规律:
(1)当除数大于1,商小于被除数;
(2)当除数小于1(不等于0),商大于被除数;
(3)当除数等于1,商等于被除数。
“[ ]”叫做中括号。一个算式里,如果既有小括号,又有中括号,要先算小括号里面的,再算中括号里面的。
二、分数除法解决问题
1,解法:(1)方程:根据数量关系式设未知量为X,用方程解答。
解:设未知量为X(一定要解设),再列方程用分率=具体量
例如:公鸡有20只,是母鸡只数的,母鸡有多少只。(单位一是母鸡只数,单位一未知.)解:设母鸡有X只。列方程为:=20
(2)算术(用除法):单位“1”的量未知用除法:
即已知单位“1”的几分之几是多少,求单位“1”的量。
分率对应量÷对应分率=单位“1”的量
例如:公鸡有20只,是母鸡只数的,母鸡有多少只。(单位一是母鸡只数,单位一未知,)用除法,列式是:20÷
2、看分率前有没有比多或比少的问题;
分率前是“多或少”的关系式:
(比少):具体量÷ (1-分率)=单位“1”的量;
例如:桃树有50棵,比苹果树少,苹果树有多少棵。
列式是:50÷(1-)
(比多):具体量÷ (1+分率)=单位“1”的量
例如:一种商品现在是80元,比原价增加了,原价多少?
列式是:80÷(1+)
3、求一个数是另一个数的几分之几是多少:用一个数除以另一个数,结果写为分数形式。
例如:男生有20人,女生有15人,女生人数占男生人数的几分之几。
列式是:15÷20==
4、求一个数比另一个数多几分之几的方法:X k B 1 . c o m
用两个数的相差量÷单位“1”的量=分数
即①求一个数比另一个数多几分之几:用(大数–小数)÷另一个数(比那个数就除以那个数),结果写为分数形式。
例如:5比3多几分之几?(5-3)÷3=
②求一个数比另一个数少几分之几:用(大数–小数)÷另一个数(比那个数就除以那个数),结果写为分数形式。
例如:3比5少几分之几?(5-3)÷5=说明:多几分之几不等于少几分之几,因为单位一不同。
5、工程问题:把工作总量看作单位“1”,合做多长时间完成一项工程用1÷效率和,即1÷(1/时间+1/时间),(工作效率=1/时间)
例如:一项工程甲单独做要5天完成,乙单独做要10天完成,甲单独做要3天完成,三人合做几天可以完成?列式:1÷(++)
第四单元比
(一)、比的意义
1、比的意义:两个数相除又叫做两个数的比。
2、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。
例如15:10 = 15÷10= (比值通常用分数表示,也可以用小数或整数表示)
15 ∶ 10=
前项比号后项比值
3、比可以表示两个相同量的关系,即倍数关系。例:长是宽的几倍。
也可以表示两个不同量的比,得到一个新量。例:路程÷速度=时间。
4、区分比和比值
比:表示两个数的关系,可以写成比的形式,也可以用分数表示。
比值:相当于商,是一个数,可以是整数,分数,也可以是小数。
5、根据分数与除法的关系,两个数的比也可以写成分数形式。
6、比和除法、分数的联系:
比
前项
比号“:”
后项
比值
除法
被除数
除号“÷”
除数
商
分数
分子
分数线“—”
分母
分数值
7、比和除法、分数的区别:除法是一种运算,分数是一个数,比表示两个数的关系。
8、根据比与除法、分数的关系,可以理解比的后项不能为0。
9、体育比赛中出现两队的分是2:0等,这只是一种记分的形式,不表示两个数相除的关系。
10、求比值:用前项除以后项,结果最好是写为分数(不会约分的就不约分)
例如:15∶ 10=15÷10==
(二)、比的基本性质
1、根据比、除法、分数的关系:
商不变的性质:被除数和除数同时乘或除以相同的数(0除外),商不变。
分数的基本性质:分数的分子和分母同时乘或除以相同的数时(0除外),分数值不变。
比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。
2、最简整数比:比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。
3、根据比的基本性质,可以把比化成最简单的整数比。
4.化简比:
(2)用求比值的方法。注意:最后结果要写成比的形式。
例如:15∶10 = 15÷10 === 3∶2
还可以15∶10 = 15÷10 =最简整数比是3∶2
5、比中有单位的,化简和求比值时要把单位化相同再化简和求比值,结果没有单位。
6.按比例分配:把一个数量按照一定的比来进行分配。这种方法通常叫做按比例分配。一般有两种解题法
1,用分率解:按比例分配通常把总量看作单位一,即转化成分率。要先求出总份数,再求出几份占总份数的几分之几,最后再用总量分别乘几分之几。
例如:有糖水25克,糖和水的比为1:4,糖和水分别有几克?
1+4=5糖占用25×得到糖的数量,水占用25×得到水的数量。
2,用份数解:要先求出总份数,再求出每一份是多少,最后分别求出几份是多少。
例如:有糖水25克,糖和水的比为1:4,糖和水分别有几克?
糖和水的份数一共有1+4=5一份就是25÷5=5糖有1份就是5×1水有4分就是5×4
第五单元圆的认识
一、认识圆形
1、圆的定义:圆是由曲线围成的一种平面图形。
2、圆心:将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。一般用字母O表示。它到圆上任意一点的距离都相等.
3、半径:连接圆心到圆上任意一点的线段叫做半径。一般用字母r表示。把圆规两脚分开,两脚之间的距离就是圆的半径。
4、直径:通过圆心并且两端都在圆上的线段叫做直径。一般用字母d表示。直径是一个圆内最长的线段。
5、圆心确定圆的位置,半径确定圆的大小。
6、在同一个圆内或等圆内,有无数条半径,有无数条直径。所有的半径都相等,所有的接近长方形。长方形的长相当于圆的周长的一半,长方形的宽相当于圆的半径。
(2)拼出的图形与圆的周长和半径的关系。
圆的半径=长方形的宽
圆的周长的一半=长方形的长
3、圆面积的计算方法:因为:长方形面积=长×宽
所以:圆的面积=圆周长的一半×圆的半径
即S圆=C÷2× r=πr × r=πr
圆的面积公式:S圆=πr → r= S圆÷ π
4、环形的面积:一个环形,外圆的半径用字母R表示,内圆的`半径用字母r表示。(R=r+环的宽度.)
S环= πR-πr或环形的面积公式:S环= π(R-r)(建议用这个公式)。
5、一个圆,半径扩大或缩小多少倍,直径和周长也扩大或缩小相同的倍数。而面积扩大或缩小的倍数是这倍数的平方倍。
例如:在同一个圆里,半径扩大3倍,那么直径和周长就都扩大3倍,而面积扩大3的平方倍得到9倍。
6、两个圆:半径比=直径比=周长比;而面积比等于这比的平方。
例如:两个圆的半径比是2∶3,那么这两个圆的直径比和周长比都是2∶3,而面积比是4∶9
7、任意一个正方形与它内切圆的面积之比都是一个固定值,即:4∶π
8、当长方形,正方形,圆的周长相等时,圆面积最大,正方形居中,长方形面积最小。反之,面积相同时,长方形的周长最长,正方形居中,圆的周长最短。
9、常用各π值结果:π = 3.14;2π = 6.28;5π=15.7
10、外方内圆(内切圆)公式S=0.86r推导过程:S=S正-S圆=d-πr=2r×2r-πr=4r-πr=r×(4-π)=0.86r
11、外圆内方(外切圆)公式S=1.14r推导过程:S=S圆-S正=πr-dr/2×2=2r×r/2×r=πr-2r=r×(π-2)=1.14r(把正方形看成两个面积相等的三角形,三角形的底就是直径,高是半径)
12、一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形。顶点在圆心的角叫做圆心角。扇形的面积与圆心角大小和半径长短有关。
13、S扇=S圆×n/360;S扇环=S环×n/360
14、扇形也是轴对称图形,有一条对称轴。
15、常见半径与直径的周长和面积的结果。
半径
半径的平方
直径
周长
面积
1
1
2
6.28
3.14
2
4
4
12.56
12.56
3
9
6
18.84
28.26
4
16
8
25.12
50.24
5
25
10
31.4
78.5
6
36
12
37.68
113.04
7
49
14
43.96
153.86
8
64
16
50.24
200.96
9
81
18
56.52
254.34
10
100
20
62.8
314
1.5
2.25
3
9.42
7.065
2.5
6.25
5
15.7
19.625
3.5
12.25
7
21.98
38.465
4.5
20.35
9
28.26
63.585
5.5
30.25
11
34.54
94.985
7.5
56.25
15
47.1
176.625
因篇幅问题不能全部显示,请点此查看更多更全内容