ANSI/AGMA(Revision9005--D94)
of
AMERICANNATIONALSTANDARD
IndustrialGearLubrication
ANSI/AGMA9005-E02AmericanNationalStandard
IndustrialGearLubricationANSI/AGMA9005--E02
(RevisionofANSI/AGMA9005--D94)
ApprovalofanAmericanNationalStandardrequiresverificationbyANSIthattherequire-mentsfordueprocess,consensusandothercriteriaforapprovalhavebeenmetbythestandardsdeveloper.
Consensusisestablishedwhen,inthejudgmentoftheANSIBoardofStandardsReview,substantialagreementhasbeenreachedbydirectlyandmateriallyaffectedinterests.Substantialagreementmeansmuchmorethanasimplemajority,butnotnecessarilyuna-nimity.Consensusrequiresthatallviewsandobjectionsbeconsidered,andthataconcertedeffortbemadetowardtheirresolution.
TheuseofAmericanNationalStandardsiscompletelyvoluntary;theirexistencedoesnotinanyrespectprecludeanyone,whetherhehasapprovedthestandardsornot,frommanufacturing,marketing,purchasingorusingproducts,processesorproceduresnotconformingtothestandards.
TheAmericanNationalStandardsInstitutedoesnotdevelopstandardsandwillinnocircumstancesgiveaninterpretationofanyAmericanNationalStandard.Moreover,nopersonshallhavetherightorauthoritytoissueaninterpretationofanAmericanNationalStandardinthenameoftheAmericanNationalStandardsInstitute.Requestsforinterpre-tationofthisstandardshouldbeaddressedtotheAmericanGearManufacturersAssociation.
CAUTIONNOTICE:AGMAtechnicalpublicationsaresubjecttoconstantimprovement,revisionorwithdrawalasdictatedbyexperience.AnypersonwhoreferstoanyAGMATechnicalPublicationshouldbesurethatthepublicationisthelatestavailablefromtheAssociationonthesubjectmatter.
[Tablesorotherself--supportingsectionsmaybequotedorextracted.Creditlinesshouldread:ExtractedfromANSI/AGMA9005--E02,IndustrialGearLubrication,withtheper-missionofthepublisher,theAmericanGearManufacturersAssociation,500MontgomeryStreet,Suite350,Alexandria,Virginia22314.]
ApprovedDecember31,2002
ABSTRACT
Thisstandardprovideslubricationguidelinesforenclosedandopengearingwhichisinstalledingeneralindustrialpowertransmissionapplications.Itisnotintendedtosupplantspecificinstructionsfromthegearmanufacturer.
Publishedby
AmericanGearManufacturersAssociation
500MontgomeryStreet,Suite350,Alexandria,Virginia22314
Copyright2002byAmericanGearManufacturersAssociationAllrightsreserved.
Nopartofthispublicationmaybereproducedinanyform,inanelectronicretrievalsystemorotherwise,withoutpriorwrittenpermissionofthepublisher.
PrintedintheUnitedStatesofAmerica
ISBN:1--55589--800--9
ii
AMERICANNATIONALSTANDARDANSI/AGMA9005--E02
Contents
Page
Foreword...............................................................iv123456
Scope..............................................................1Normativereferences.................................................1Overviewoflubrication................................................2Minimumperformancerequirements....................................3Applications.........................................................4Opengearing........................................................9
Bibliography...........................................................31
Annexes
ABCDEF
Lubricantpropertiesandmethodsofmeasurement......................11Guidelineforlubricantviscositygradeselection..........................18Guidelinefordetermininglubricanttypebasedonapplication..............24Guidelineforlubricationofopengearing................................25Guidelineforconditionmonitoring.....................................27Lubricationsystemmaintenance......................................29
Tables
1234
Minimumperformancerequirementsforinhibited(RO)oils.................4Minimumperformancerequirementsforantiscuff/antiwear(EP)oils.........5Minimumperformancerequirementsforcompounded(CP)oils.............6Viscositygraderequirements..........................................7
iii
ANSI/AGMA9005--E02AMERICANNATIONALSTANDARD
Foreword
[Theforeword,footnotesandannexes,ifany,inthisdocumentareprovidedforinformationalpurposesonlyandarenottobeconstruedasapartofANSI/AGMAStandard9005--E02,IndustrialGearLubrication.]
AGMAformedtheLubricationCommitteein1938tostudygearlubricationproblems.Thiscommitteedraftedtentativestandard250.01,LubricationofEnclosedandOpenGearing,whichwasacceptedin1943andadoptedasafullstandardin1946.LubricationStandard250.01wasrevisedtoincludeonlyindustrialenclosedgearingandwasacceptedbythemembershipin1955asAGMA250.02.AGMA250.03,whichwaspublishedin1972,supersededAGMA250.02aswellasAGMA250.02A,TypicalManufacturer’sOilsMeetingAGMAStandard250.02,May,1956;andAGMA252.02,MildExtremePressureLubricants,May,1959.ThelistofTypicalManufacturer’sOilswaseliminatedduetodifficultiesinkeepingsuchalistuptodate.AGMA250.03containedinstead,alistofdetailedspecificationswhichhadtobemetbeforeanoilcouldberecommendedforuseinAGMAratedgeardrives.ItthenbecametheresponsibilityoftheoilsuppliertocertifyaparticularproductasmeetingAGMAspecifications.AGMA250.04,publishedin1981,eliminatedleadnaphthenateasanEPadditiveandadjustedtheAGMAlubricantnumberingsystemtobecoincidentwiththeviscosityrangesestablishedbytheAmericanSocietyforTestingMaterials(ASTM2422),theBritishStandardsInstitute(B.S.4231),andtheInternationalStandardsOrganization(ISO3448).
Theeliminationofopengearing,wherethebearingsarelubricatedseparately,fromAGMA250.02createdtheneedforanewstandardtocoverthisareaoflubrication.AGMAStandardAGMA251.01,LubricationofIndustrialOpenGearing,wasapprovedinApril,1963.ThisstandardwasrevisedinSeptember,1974.AGMA251.02extendedcoveragetobevelgears.OtherchangesincludedtheadditionofAGMALubricantNumbersbasedontheASTMviscositysystemandcompletespecificationsforR&OgearoilsandEPgearlubricants,andtheadditionofanappendixontestproceduresandlimits.
AGMAStandard9005--D94againcombinedenclosedandopengearing,supersedingAGMA250.04andAGMA251.02.Inaddition,itwasupdatedtoreflectmarketchangesinavailabilityofheavybodiedopengearlubricants.Itwasalsoexpandedtoprovidecoverageofmoderntechnologyintheareaofsyntheticoils.Syntheticoilswererecognizedasaseparateclassoflubricantswiththeirownspecificationrequirements.SpecificationsofEPoilswereupgradedtoreflectadvancesintechnology.EPoilswerenolongerrecommendedforwormgearservice.Pitchlinevelocityreplacedcenterdistanceastheparameterforlubricantselectioninotherthandoubleenvelopingwormgearapplications.AnnexBprovidedacopyoftable3fromAGMA250.04forinformationonly.
ReferencestoSayboltviscosity(SSU)wereeliminatedinfavorofkinematicviscosity(mm2/s,commonlyreferredtoascSt).ThiswasconsistentwithpracticesoftheAmericanSocietyforTestingMaterials,theSocietyofTribologistsandLubricationEngineers,theBritishStandardsInstitution,andindustryingeneral.AnnexAprovidedinformationonthetheoryofelastohydrodynamiclubrication.
ANSI/AGMA9005--E02attemptstooffertheenduserandequipmentbuildermoredefinitiveguidelinesforselectinglubricantsbasedoncurrenttheoryandpracticeintheindustry,andattemptstoalignwithcurrentISOstandards.Thedocumentisfocusedonprovidingthecorrectviscosityandperformancelevelfortheapplicationbyprovidingtheuseraseriesofinformativetablestomatchtheirequipmenttype,operation,andneedstodefineanappropriatefinishedlubricant.Theenduserisencouragedtoworkwiththeirequipmentbuilderandlubricantsuppliertoachievethemostreliablesystemfortheirneeds.iv
AMERICANNATIONALSTANDARDANSI/AGMA9005--E02
ThefirstdraftofANSI/AGMA9005--E02wasmadeinMay,1999.ItwasapprovedbytheAGMAmembershiponMarch13,2003.ItwasapprovedasanAmericanNationalStandardonDecember31,2002.
Suggestionsforimprovementofthisstandardwillbewelcome.TheyshouldbesenttotheAmericanGearManufacturersAssociation,500MontgomeryStreet,Suite350,Alexandria,Virginia22314.
v
ANSI/AGMA9005--E02AMERICANNATIONALSTANDARD
PERSONNELoftheAGMAIndustrialGearLubricationCommittee
Chairman:BrianM.O’Connor...................TheLubrizolCorporation
ACTIVEMEMBERS
T.Barnes......................................C.D.Barrett...................................A.B.Cardis....................................S.W.Eliot......................................R.Gapinski....................................M.A.Garcia....................................D.R.Gonnella..................................C.C.Henderson................................S.R.Hutchens.................................J.J.Kolonko...................................D.A.Lauer.....................................D.J.Speck....................................D.G.Woodley..................................J.A.Zakarian..................................
HarnischfegerCorporation
CastrolIndustrialNorthAmerica,Inc.ExxonMobilR&ECompanyExxonMobilL&SCompanyTheLubrizolCorporationRepsol--YPF
EquilonEnterprisesL.L.C.EquilonEnterprisesL.L.C.ConeDriveOperations,Inc.TheFalkCorporation
KluberLubricationN.A.L.P.TheLubrizolCorporationEquilonEnterprisesL.L.C.
ChevronTexacoGlobalLubricants
ASSOCIATEMEMBERS
K.E.Acheson..................................A.C.Becker...................................K.Brinker.....................................R.Ciesko.....................................R.J.Drago.....................................R.Errichello...................................T.Glasener....................................S.Granger....................................J.E.Hardy.....................................G.Henriot.....................................F.Hunscher...................................V.Ivers.......................................B.Kearney....................................A.G.Milburn...................................M.Peculis.....................................A.E.Phillips....................................V.Z.Rychlinski.................................L.J.Smith.....................................R.G.Smith....................................D.Townsend...................................F.C.Uherek....................................A.Wallace.....................................
TheGearWorks–Seattle,Inc.NuttallGearL.L.C.
GeneralMotorsCorporationRCAssociates–ConsultantsBoeingDefense&SpaceGroupGEARTECHXtek,Inc.
EquilonEnterprisesL.L.C.ConeDriveOperations,Inc.Consultant
MeritorAutomotiveXtek,Inc.
ElcoCorporationMilburnEngineering
ClevelandGearCompanyRockwellAutomation/DodgeBradFooteGearWorks,Inc.Consultant
PhiladelphiaGearCorporationTownsendEngineeringFlenderCorporation
IronOreCompanyofCanada
vi
AMERICANNATIONALSTANDARDANSI/AGMA9005--E02
AmericanNationalStandard--
worm.Theseguidelinesmayormaynotbeapplicabletonon--metallicgears.
Thisstandarddoesnotaddressgreaselubricatedencloseddrives,aerospaceapplicationsoraddressspecialregulatoryrequirementsassociatedwithfoodordrughandlingormanufacturingequipment.Thisstandardisnotintendedtoreplaceanyexistingstandardssuchasinautomotiveapplicationswheresimilargearingmaybeused.
NOTE:Thisstandardisnotintendedtosupplantanyspecificrecommendationsofgearmanufacturers.
IndustrialGearLubrication
1Scope
Thisstandardprovidestheenduser,originalequip-mentbuilder,gearmanufacturer,andlubricantsupplierwithguidelinesforminimumperformancecharacteristicsforlubricantssuitableforuseingeneralpowertransmissionapplications.TheseguidelinescoverbothopenandenclosedgearingwhichhavebeendesignedandratedinaccordancewithapplicableAGMAstandards.Thetypesofgearingincludedhereinaremetallicspur,helicalincludingherringbone,straightandspiralbevel,andISOnumberISO2160:1998ISO2592:2000ISO2909:1991ISO3104:1994ISO3448:1992ISO4263:1995ISO6247:1998ISO7120:1987ISO12937:2000ISO14635--1:2000------------ASTMnumberASTMD130--94ASTMD92--97ASTMD2270--93ASTMD445--96ASTMD2422--97ASTMD943--95ASTMD892--95ASTMD665--95ASTMD6304--00ASTMD5182--97ASTMD2711--99ASTM2893--99ASTMD2983--872Normativereferences
Thefollowingstandardscontainprovisions,whichthroughreferenceinthistext,constituteprovisionsofthisstandard.Atthetimeofpublication,theeditionslistedwerevalid.Allstandardsaresubjecttorevisionandpartiestoagreementsbasedonthisstandardareencouragedtoapplythemostrecenteditionsofthestandardsindicatedbelow.
TitlePetroleumproducts--Corrosivenesstocopper--Copperstriptest
Determinationofflashandfirepoints--Clevelandopencupmethod
Petroleumproducts--Calculationofviscosityindexfromkinematicviscosity
Petroleumproducts--Transparentandopaqueliquids--Determinationofkinematicviscosityandcalculationofdynamicviscosity
Industrialliquidlubricants--ISOviscosityclassificationPetroleumproducts–Determinationofwater--CoulometricKarlFischertitrationmethod
Petroleumproducts--DeterminationoffoamingcharacteristicsoflubricatingoilsPetroleumproductsandlubricants--Petroleumoilsandotherfluids--Determinationofrust--preventingcharacteristicsinthe
presenceofwater
Petroleumproducts–DeterminationofwaterinliquidpetroleumproductsbyKarlFischerreagentGears--FZGTestprocedures--Part1:FZGtestmethodA/8,3/90forrelativescuffingload--carryingcapacityofoils
Standardtestmethodfordemulsibilitycharacteristicsoflubricatingoils
Standardtestmethodforoxidationcharacteristicsofextreme--pressurelubricationoils
Standardtestmethodforlow--temperatureviscosityofautomotivefluidlubricantsmeasuredbyBrookfieldviscometer
1
ANSI/AGMA9005--E023Overviewoflubrication
Whenonethinksofgearlubrication,theprimaryconcernisusuallyaboutthegears.Inadditiontothegearsthemselves,therearemanyothercompo-nentsthatmustalsobeservedbythefluidinthegearbox.Considerationshouldalsobegiventothebearings,seals,andotherauxiliaryequipment,e.g.,pumpsandheatexchangers,thatmaybeaffectedbythechoiceoflubricant.Withmanyopengeardrives,thebearingsarelubricatedindependentlyofthegears,thusallowingforspecialfluidrequire-mentsshouldtheneedarise.However,mostenclosedandsemi--enclosedgeardrivesutilizeonelubricantandlubricantsourceofsupplyforthegears,bearings,seals,pumps,etc.Therefore,selectingthecorrectlubricantforageardrivesystemincludesaddressingthelubricationneedsofnotonlythegears,butalsoallotherassociatedcomponentsinthesystem.3.1General
Alubricantisusedingearapplicationstocontrolfrictionandwearbetweenthematingsurfaces,andinenclosedgeardriveapplications,totransferheatawayfromthecontactarea.Italsoservesasamediumtocarrytheadditivesthatmayberequiredforspecialfunctions.Therearemanydifferentlubricantsavailabletoaccomplishthesetasks.Lubricantpropertiescanbequitevarieddependingonthesourceofthebasestock(s)andthetypeofadditive(s)used.Terminologydescribingtheperfor-mancepropertiesoflubricantscanbejustasvarieddependingonthedefinitionused.ThedescriptionsprovidedinthisstandardarenotintendedtoreplacethosefoundinAGMA,ASTM,ISO,SAEorothertechnicalsocietydocuments.Itismerelyintendedtoprovidetheuserwithmoreinformationabouttheterm,howitisappliedinthisstandard,andhowitismeasured.ExamplesofsomepropertiesusedtoassesslubricantsuitabilityforgearapplicationsarediscussedinannexA.
Thephysicalpropertiesofalubricant,suchasviscosityandpourpoint,arelargelyderivedfromthe
2
AMERICANNATIONALSTANDARD
basestock(s)fromwhichtheyareproduced.Whileviscosityisthemostcommonpropertyassociatedwithalubricant,therearemanyotherpropertiesthatcontributetothemakeupandcharacterofthefinishedproduct.Thepropertiesoffinishedgearlubricantsresultfromacombinationofbasestockselectionandadditivetechnology.3.2Lubricantselection
Thekeyfunctionsprovidedbythelubricantaretominimizethefrictionandwearbetweensurfacesinrelativemotion,andtoremoveheatgeneratedbythemechanicalactionofthesystem.Inordertoaccomplishthesetasks,thelubricantmusthavesufficientviscositytoseparatethematingsurfacesasmuchaspossible,andalsohavetheappropriatechemical(additive)systemtominimizethermalandoxidativedegradation,andprovideantiwearandantiscuffperformancefortransientpeakoperatingsituations.
Thechoiceoftheappropriatelubricantdependsinpartonmatchingitspropertiestotheparticularapplication.Adetailedelastohydrodynamic(EHD)analysisofthegearboxisthemostdesirableandthoroughassessmentofthegearlubricationrequire-ments,butthisisnotalwayspracticalduetotheamountofinformationrequired.Formoreinforma-tionaboutthisapproachthereaderisrecommendedtoreviewtheinformationprovidedinANSI/AGMA2101--C95[1]andAGMA925--A02[2].
Intheabsenceofdetailedinformationaboutgeargeometry,loading,etc.,itisrecommendedthattheuserfollowthetablesofferedinannexB.ThetableslistedinannexBprovideestimatesoftheappropri-ateviscositygrade(VG)basedonbothoperatingspeedandtemperature.AnnexBcontainsfourtablesbecausetheviscositygradewillalsobedependentupontheviscosity--temperaturecharac-teristicsorviscosityindex(VI)ofthefluidused.ThefourVIschosenwereconsideredrepresentativeofmostfluidsusedinindustrialapplicationstoday.TheyincludeVIsof90,120,160,and240.
AMERICANNATIONALSTANDARDTheusermuststillascertaincertainperformanceattributesforthegearboxtomakeareasonablelubricantselection.Theusershouldbepreparedto:--determinethetypeofgearingusedinthetransmission;
--determinethematerialsofconstructionofallsystemcomponents,suchas:
--gears;--bearings;--seals;--piping;--sightglasses;
--determineselectedoperatingconditions,suchas:
--ambienttemperature;--operatingoiltemperature;
-velocities;
-minimumand
maximum
pitch
line
--determineanycriticalspecialcircumstances,suchas:
--lowtemperaturestart--up;
--ambienttemperaturesabove50°C;--high,transientloads.
Usingtheaboveinformation,onecanestimatetheappropriateviscosityfortheparticularapplicationbasedontheeffectiveoperatingtemperaturethegearswillseeinservice.Sinceindustrialgearapplicationsinvolveawidevarietyofoperatingconditionsandgeartypes,oilsareclassifiedaccord-ingtotheirgeneralperformanceaswellasbytheirviscosity.
3.3Lubricantclassifications
Forthepurposesofthisdocument,lubricantsareconsideredtobeinoneofthreedistinctclasses:inhibited;antiscuff/antiwear;orcompounded.Eachclasshasitsownsetofrequirementsandisintendedtoprovidethecorrectperformanceforeachapplica-tion.
3.3.1Inhibitedoils(RO)
Thesearecommonlyreferredtoasrustandoxidationinhibited,orR&Olubricants.Theyare
ANSI/AGMA9005--E02
formulatedwithhighlyrefinedpetroleumorsyntheticbaseoilsandcontainadditivesthatenhanceoxida-tionstability,providecorrosionprotection,andsuppressfoam.Theirsuperioroxidationstabilitiestypicallysetthemapartfromothergearoiltypes.However,theirload--carryingcapabilities(asmea-suredbystandardteststhatassessthesecharacter-istics)maybelessthanothers.Theseoilsaregenerallyassociatedwithhigherspeedandlighterloadapplications.
3.3.2Antiscuff/antiwearoils(EP)
Inadditiontoprotectionagainstcorrosionandoxidation,theseoilscontainadditiveswhichprovideprotectionagainstunacceptablewearandscuffing.Theseoilsareformulatedwithrefinedpetroleumorsyntheticbaseoils.TheyaregenerallyusedinISOVGsof150andabove,andweredevelopedtoprotectgearedsystemsoperatingathighloadsandsevereimpactorreversalconditions.3.3.3Compoundedoils(CP)
Compoundedgearoilsareablendofpetroleumbaseoilswiththreetotenpercentofnaturalorsyntheticfattyoils.Theselubricantsarefrequentlyusedinwormgeardrives.
4Minimumperformancerequirements
Thetablesprovidedinthissectionlisttheminimumrequirementsforlubricantsdesignatedforuseasinhibited,antiscuff/antiwear,andcompoundedoils.Theserepresentminimumstandardsintheabsenceofspecificguidelinesissuedbytheequipmentmanufacturer.Inadditiontotheminimumrequire-mentsoutlinedintables1,2,and3,thechoiceoflubricantshouldalsoconsideranyspecialcircum-stancesormodesofoperationnotaddressedhere.Examplesofspecialcircumstancesmightincludelowstart--uptemperatures,abrasivecontaminants,higherthannormaloperatingtemperatures,etc.Theseissuesshouldbereviewedwiththeequip-mentmanufacturerand/orlubricantsuppliertoensuretheproperlubricantischosenfortheconditions.
3
ANSI/AGMA9005--E02AMERICANNATIONALSTANDARD
Table1--Minimumperformancerequirementsforinhibited(RO)oils
Testmethod:ISO/ASTM3448/D24223104/D4453104/D4452909/D2270None/D29832592/D924263/D94312937/D63046247/D892TemperatureSeq.I24°CSeq.II93.5°CSeq.III24°C
18015007505003005minblow10minsettle500500500
5minblow757575
90150000200Report1)Report1)10minsettle101010
3246Property
ViscositygradeViscosity@40°C,mm2/sViscosity@100°C,mm2/sViscosityindex2),min.Bulkfluiddynamicviscosity@coldstart--up3),mPa⋅s,max.
Flashpoint,°C,min.Resistancetoaging--Hours@95°Ctoreach2.0acidnumber,min.
Watercontent4),ppm,max.Foamsuppression--Volumeoffoam(mL),max.after:
Requirements
681001502203204606801000--3200Seetable4Report1)85Report1)>3200Report1)CleanlinessWaterseparation5)--%H2Oinoilafter5htest,max.
--Cuffaftercentrifuging,mL,max.
--TotalfreeH2Ocollectedduringentiretest,startingwith45mL,H2OmL,min.Rustprevention,partBCoppercorrosionprevention,3h@121°C,rating,max.
None/NoneVisualNone/D2711(Procedure
A)
Mustbefreeofvisiblesuspendedorsettledcontaminantsatthetimeitisinstalledforuse
0.52.030.0
2.04.030.0
Pass1bReport1)Report1)Report1)
7120/D6652160/D130NOTES:1)Lubricantsuppliertoreportvalueinaccordancewithstatedtestmethodforinformationalpurposes.
2)Viscosityindiceslessthantheminimumvalueslistedareacceptableifagreeduponbytheenduserandequipmentmanufacturerand/orlubricantsupplier.3)Start--uptemperaturetobespecifiedbyenduser.Reporttemperaturefor150000mPaSs.
4)Watercontentofvirginlubricantaspackaged.Acceptablevaluemaybegreaterforsomefullsynthetics,e.g.,polyglycols(PAG),syntheticblends,orblendsofsyntheticandmineralbasefluids.Valuemaybeagreeduponbytheenduserandequip-mentmanufacturerand/orlubricantsupplier.
5)Maximumvaluesshownareformineraloils.Acceptablevaluesmaybegreaterforsomefullsynthetics,e.g.,polyglycols(PAG),syntheticblends,orblendsofsyntheticandmineralbaseoils.Acceptablevaluesmaybeagreeduponbytheenduserandequipmentmanufacturerand/orlubricantsupplier.
5Applications
5.1Operatingconditions5.1.1Speed
Thefollowingguidelinesaredirectlyapplicabletohelical,herringbone,bevel,andspurgearswhichoperateatorbelow3600revolutionsperminute,orapitchlinevelocityofnotmorethan40meterspersecond,orboth.Theyarealsodirectlyapplicabletowormgearswhichoperateatorbelow2400rpm(wormspeed)or10meterspersecondslidingvelocity.Theguidelinesmaybeapplicableathigherspeeds,butspecialconsiderationsaregenerallyrequired.Therefore,thegearmanufacturershouldbeconsultedwhenoperatingspeedsexceedthoselistedabove.
4
AMERICANNATIONALSTANDARDANSI/AGMA9005--E02
Table2--Minimumperformancerequirementsforantiscuff/antiwear(EP)oils
Testmethod:ISO/ASTM3448/D24223104/D4453104/D4452909/D2270None/D29832592/D92None/D289318068109015000020015Report1)324668100150Property
ViscositygradeViscosity@40°C,mm2/sViscosity@100°C,mm2/sViscosityindex2),min.Bulkfluiddynamicviscosity@coldstart--up3),mPa⋅s,max.
Flashpoint,°C,min.Resistancetoaging@121°C--max.%increaseinkinematicviscosity@100°C
Watercontent4),ppm,maxFoamsuppression--Volumeoffoam(mL),maxafter:
Requirements2203204606801000--3200>3200Report1)85Report1)Seetable4Report1)12937/D63046247/D892TemperatureSeq.I24°CSeq.II93.5°CSeq.III24°C
3005minblow505050
10minsettle000
5minblow757575
Report1)10minsettle101010
CleanlinessWaterseparation5)--%H2Oinoilafter5htest,max.
--Cuffaftercentrifuging,mL,max.
--TotalfreeH2Ocollectedduringentiretest,startingwith90mLH2O,mL,min.Rustprevention,PartBCoppercorrosionprevention,3h@100°C,rating,max.
Scuffingloadcapacity,FZGvisualmethod,A/8.3/90,failstage,min.
None/NoneVisualNone/D2711(Procedure
B)
Mustbefreeofvisiblesuspendedorsettledcontaminantsatthetimeitisinstalledforuse
2.01.080.0
2.04.050.0
Pass1b1012>12Report1)Report1)Report1)
7120/D6652160/D13014635--1/D5182
NOTES:1)Lubricantsuppliertoreportvaluesinaccordancewithstatedtestmethodforinformationalpurposes.
2)Viscosityindiceslessthantheminimumvalueslistedareacceptableifagreeduponbytheenduserandequipmentmanufacturerand/orlubricantsupplier.3)Start--uptemperaturetobespecifiedbyenduser.Reporttemperaturefor150000mPaSs.
4)Watercontentofvirginlubricantaspackaged.Acceptablevaluemaybegreaterforsomefullsynthetics,e.g.,polyglycols(PAG),syntheticblends,orblendsofsyntheticandmineralbasefluids.Valuemaybeagreeduponbytheenduserandequipmentmanufacturerand/orlubricantsupplier.
5)Maximumvaluesshownareformineraloils.Acceptablevaluesmaybegreaterforsomefullsynthetics,e.g.,polyglycols(PAG),syntheticblends,orblendsofsyntheticandmineralbaseoils.Acceptablevaluesmaybeagreeduponbytheenduserandequipmentmanufacturerand/orlubricantsupplier.
5
ANSI/AGMA9005--E02AMERICANNATIONALSTANDARD
Table3--Minimumperformancerequirementsforcompounded(CP)oils
Property
ViscositygradeViscosity@40°C,mm2/sViscosity@100°C,mm2/sViscosityindex,min.2)Bulkfluiddynamicviscosity@cold
start--up3),mPa⋅s,max.Flashpoint,°C,min.Resistancetoaging@95°C--max.%increaseinkinematicviscosity@100°C
Watercontent4),ppm,max.
Foamsuppression--Volumeoffoam(mL),max.after:
Testmethod:ISO/ASTM3448/D24223104/D4453104/D4452909/D2270None/D298390150000100150220Requirements3204606801000–3200Seetable4Report1)852592/D92None/D2893200Report1)12937/D63046247/D892Seq.ISeq.IISeq.III
None/NoneNone/NoneVisual7120/D6652160/D130300
Report1)5minblow757575
10minsettle101010
Temperature24°C93.5°C24°C5minblow50505010minsettle000
Contentoffattyorsyntheticfattyoil,mass%CleanlinessRustprevention,PartBCoppercorrosionprevention,3h@100°C,rating,max.
3to10Mustbefreeofvisiblesuspendedorsettledcontaminantsatthetimeitisinstalledforuse
Pass1bNOTES:1)Lubricantsuppliertoreportvalueinaccordancewithstatedtestmethodforinformationalpurposes.
2)Viscosityindiceslessthantheminimumvalueslistedareacceptableifagreeduponbytheenduserandequipmentmanufacturerand/orlubricantsupplier.3)Start--uptemperaturetobespecifiedbyenduser.Reporttemperaturefor150000mPaSs.
4)Watercontentofvirginlubricantaspackaged.Acceptablevaluemaybegreaterforsomefullsynthetics,e.g.,polyglycols(PAG),syntheticblends,orblendsofsyntheticandmineralbasefluids.Valuemaybeagreeduponbytheenduserandequipmentmanufactur-erand/orlubricantsupplier.
5.1.2Ambienttemperature
Ingeneral,theinstalledgearsmaybeexposedtoanambienttemperaturerangeof--40°Cto+55°C.Theambienttemperatureisdefinedasthedrybulbairtemperatureintheimmediatevicinityoftheinstalledgears.Specifictypeandviscositygradewillbedetermined,inpart,byambienttemperature.5.1.3Oilsumptemperature
Theallowablemaximumoilsumptemperaturefora6
givenapplicationisdependentonthechoiceofbaseoiltypeandadditivechemistry.Consultthelubricantsupplierforspecificsontheoilbeingchosen.Manylubricantsareunstableabovetheirstatedmaximumtemperature.
CAUTION--Sumptemperaturesinexcessof95°Cmayrequirespecialmaterialsfornon--metalliccompo-nentssuchasoilsealsandshims.Consultcomponentsupplierforrecommendedtemperaturelimits.
AMERICANNATIONALSTANDARDANSI/AGMA9005--E02
Table4--Viscositygraderequirements
ISOviscosity
gradeISOVG32ISOVG46ISOVG68ISOVG100ISOVG150ISOVG220ISOVG320ISOVG460ISOVG680ISOVG1000ISOVG1500ISOVG2200ISOVG3200
Mid--pointviscosityat40°Cmm2/s1)
3246681001502203204606801000150022003200
Kinematicviscositylimitsat40°Cmm2/s1)
minmax28.835.241.450.661.274.890.01101351651982422883524145066127489001100135016501980242028803520
FormerAGMAgrade
equivalent2)
0123456788A91011
NOTES:1)Thepreferredunitforkinematicviscosityismm2/s,commonlyreferredtoascentistoke(cSt).
2)WiththechangefromAGMAviscositygradeequivalentstoISOviscositygradeclassifications,thedesignationsS,EP,RandCOMPwillnolongerbeusedaspartoftheviscositygradenomenclature.
5.1.4Otherconsiderations
Machineryexposedtothedirectraysofthesunwillrunhotterthanthesameequipmentinanidenticalapplicationwhichissheltered.Conditionsthatmayrequiremorefrequentlubricantchangesinclude:--ambientconditionsofextremedust,dirt,moistureand/orchemicalfumes;
--sustainedlubricantsumptemperatureap-proaching95°C;
--dutycycleorambientconditionscausinglargeandrapidtemperaturechanges;
--seasonalambienttemperaturesresultinginchangesofrecommendedlubricantgrade.5.1.5Lowtemperaturegearoils
Geardrivesoperatingincoldareasmustbeprovidedwithoilthatcirculatesfreelyanddoesnotcausehighstartingtorques.Anacceptablelowtemperaturegearoil,inadditiontomeetingthespecificationsofthisstandard,shouldhaveapourpointatleast5°Clowerthanexpectedminimumambientstart--uptemperature.Lubricantviscositymustbelowenoughtoallowtheoiltoflowfreelyatthestart--uptemperature,buthighenoughtocarrytheloadattheoperatingtemperature.Geardrivesequippedwith
anoilpumpshouldalsoconsiderthemaximumviscositythatthepumpcandeliver.5.1.6Sumpheaters
Ifasuitablelowtemperaturegearoilisnotavailable,thegeardrivemustbeprovidedwithasumpheatertobringoiluptoatemperatureatwhichitwillcirculatefreelyforstarting.Theheater,preferablyequippedwiththermostaticcontrol,shouldbede-signedsoastoavoidexcessivelocalizedheating,whichcouldresultinrapiddegradationofthelubricant.Aratingof0.8wattspercm2ofheatersurfaceareaisconsideredconservativeformostapplications.Higherwattdensitiesmaybeusedwithgoodcirculationwithinthesump.5.1.7Coolers
Provisionshouldbemadeforcoolingthelubricantwherenormalcontinuousoperationofthegearingwouldraisebulkfluidoverrecommendedtempera-tures.Thermostaticcontrolisrecommended.5.2Methodsofapplication
5.2.1SplashandidlerimmersionsystemsThesearethesimplestmethodsoflubricatinggears.Thegearoranidlerinmeshwiththegearisallowedtodipintothelubricantcarryingitaroundtothemesh.Splashsystemsaregenerallylimitedtopitch
7
ANSI/AGMA9005--E02linevelocitiesbelow15meterspersecondfornon--wormgearsand10meterspersecondslidingvelocityforworms,sincethelubricantmaybethrownoffathigherspeeds.However,withtheincorpora-tionofappropriatedesignfeatures,splashsystemshavebeensuccessfullyusedinnon--wormgeardrivesoperatingwithpitchlinevelocitiesupto25meterspersecond.Idlerimmersionsystemsaregenerallylimitedtopitchlinevelocitiesbelow1.5meterspersecond.SeeannexesB,CandDforlubricantselectionguidelinesforthesesystems.5.2.2Gravityfeedorforceddrip
Thismethodoflubricationinvolvesoneormoreoilersoracascadepanwhichallowsoiltodripintothegearmeshatasetrate.GuidelinesforselectionofoilsandratesofapplicationforthismethodoflubricationareshowninannexD.Thismethodofapplicationislimitedtoopengearingwithpitchlinevelocitiesof7.5meterspersecondorless.5.2.3Handorbrushapplication
Thismethodmaybeusedwithheaviergradesandresidualcompounds.Frequencyofapplicationmaybedeterminedbyobservation.5.2.4Spraysystems
Spraysystemsapplyacontinuousorintermittentsupplyoflubricanttothegearteethunderpressure.5.2.4.1Enclosedgearunits
Gearsandbearingsarelubricatedbythesamecirculatingpumpsystemtoprovidecontinuouslubrication.Theoilrunsbacktoasumpandisrecirculatedthroughthesystem.Thissystemmayalsoconsistoftemperatureandpressurecontrolsandemploysuitableoilfiltration.LubricantselectionguidelinesforcontinuouspressurelubricationcanbefoundinannexesBandC.5.2.4.2Opengearing
Intermittentmechanicalspraysystemsareusedwithopengearinganddependontheuseofheavyoil,grease,orresidualcompoundswhichwillremainonthegearteeththroughseveralrevolutions.Thesprayisactivatedautomaticallyorbyhandatcertaintimedintervals.Thesprayingtimeshouldequalthetimeforoneorpreferablytworevolutionsofthegeartoensurecompletecoverage.Periodicinspectionsshouldbemadetoensurethatsufficientlubricantisbeingappliedtogiveproperprotection.Twohoursisthemaximumintervalpermittedbetweenapplica-8
AMERICANNATIONALSTANDARD
tionsoflubricant.Morefrequentapplicationofsmallquantitiesispreferred.GuidelinesforlubricantselectionandlubricantquantitiesusingthismethodofapplicationareshowninannexD.
Spraynozzlesmustbesufficientinnumberandproperlyspacedtoprovideadequatelubricantcoverageacrosstheentirefaceofthegearteeth.Asaguideline,forslowspeedopengearingoperatingupto10meterspersecond,theendnozzlesaregenerallyplaced50to65millimetersfromthegearfaceedgewiththeremainingnozzlesspacedon130to180millimetercenters.Nozzlelocationisalsoafunctionofthespraypattern.Spraynozzlesaregenerallypositionedtodirectthelubricantattheloadedprofilesofthegearteethandaretypicallylocatedadistanceof150to200millimetersmaximumfromthegearteeth.
Asaguideline,foropenorenclosedgearingoperatingabove10meterspersecond,thefunctionofthelubricantasacoolantmustbeconsidered.5.2.4.3Protectivedevices
Protectivedevicesarerecommended,whereappli-cable,towarnoffailureoftimers,coolers,systempressure,lubricantsupply,aswellasdirtyfilters.5.3Lubricantselection
Properselectionofagearlubricantisessentialtoachievingmaximumservicelifeinagivenapplication.Therecommendationsofthegearmanufacturershouldbefollowed,whenavailable,inselectingagearlubricant.Intheabsenceofsuchinformation,annexesBandCgiveguidelinesforlubricantselectionintheformoftablesbasedonoperatingtemperature,velocities,andmodeofoperation.Inthecaseofwormgeardrives,ambienttemperatureisselectedasacriteriabecauseoperatingtemperatureisgenerallynotknownatthetimeofinstallation.Itisimportanttomaintainproperviscosityattheoperatingtemperature.Therefore,parameterssuchastemperature,noiseandvibra-tionshouldbecloselymonitoredatstart--upwithappropriatechangesinlubricantviscositygrade,ifnecessary.AnnexBprovidesguidelinesforISOviscositygradeselectionforvariousoperatingconditions.
Whiletheseguidelineswillgenerallyprovidesatis-factoryselections,adetailedengineeringanalysisisalwayspreferred,especiallyincriticalapplicationsandhighspeedunits.Suchananalysisisbeyondthescopeofthisstandard;however,annexAincludes
AMERICANNATIONALSTANDARDinformationandreferencesonthesubject.ISOviscositygradeguidelinesinannexBareempirical,representinganaccumulationofgearindustryexperience.
6Opengearing
Opengearingissimilartoenclosedgearingexcept,asthenameimplies,thesegearsarenotenclosedwithinahousing.Thesegearsmaybeofanytype,butcommonlyarespurandhelicalgears.Theirlubricationrequirementsaresimilartoenclosedgears,butthemethodofapplicationisusuallydifferent.Severalfactorsmustbeconsideredwhendeterminingthelubricanttobeusedwithopengears.Theseinclude:degreeofenclosure;speedofthegears;size(pitchdiameter);environment;accessi-bilityofthegears;and,methodoflubricantapplica-tion.Sinceopengearshaveatendencytothrowoffconventionaloilssuchasthoseusedwithmostencloseddrives,muchhigherviscositylubricants,sprayablegreases,orresidualoilsaretypicallyusedfortheseapplications.
Opengearsarealsoexposedtoavarietyofenvironmentalconditionswhichcanbequiteharsh
ANSI/AGMA9005--E02
insomecases.Someexamplesmightincludegearingfordrawbridgesexposedtocorrosivesaltwateratmosphere,drivemechanismsfordryerrollsinpapermillswherehumidityandambienttempera-turearehigh,andringgearsonrotatinggrindingmillsandkilnswhichoperateoverwidetempera-turesandindustyenvironments.
Ifthereisnomeansoflubricantrecovery,suchaswithasump,thenopengearsmustbelubricatedontheall--lossprincipleregardlessofthemethodofapplication.Tocounterrun--off,thelubricantshouldpossessahighviscosityandapersistencetomaintainafilmonthesurfaceoftheteeth.Regardlessofwhetherthelubricantcanberecov-eredornot,itmustprotectthesurfacesfromtheenvironmentalconditionsinwhichtheyoperate.AnnexDoutlinestheviscosityrecommendationsforavarietyofopengearapplications.Theseincludecontinuousandintermittentlubricantapplicationforbothsplashandpressurefedsystems.Itfurtherdelineatesthechoicesaccordingtoambienttemper-atureandtypeofoperation.Applicationratesforintermittentlubricationmethodsasafunctionofgearsizearealsoprovided.
9
ANSI/AGMA9005--E0210
AMERICANNATIONALSTANDARD
(Thispageisintentionallyleftblank.)
AMERICANNATIONALSTANDARDANSI/AGMA9005--E02
AnnexA(informative)
Lubricantpropertiesandmethodsofmeasurement
[Theforeword,footnotesandannexes,ifany,areprovidedforinformationalpurposesonlyandshouldnotbeconstruedasapartofANSI/AGMA9005--E02,IndustrialGearLubrication.]
A.1Airentrainment
Airentrainmentisalsoreferredtoastheairreleasepropertyofafluid.Withindustrialoils,thispropertyisdeterminedbyestablishingthedensityofthefluidinitsnaturalstate,aeratingit,andmeasuringthetimeittakestoreturntoitsoriginaldensity.Viscosityandtemperaturewillaffecttherateatwhichafluidwillreleaseentrainedair.Theabilityofthebulkfluidtoreleaseentrainedairisaninherentpropertyofthebasefluid.Abasefluidwithmarginalairreleasecapabilitiesinneatformcandevelopsevereairentrainmentwiththeuseofthewrongcombinationofadditivesand/ortheuseoftoohighaconcentrationofadditives.Thesameappliestoabasefluidwithexcellentinherentairreleasepropertiesiftheadditivelevelisexcessive.Therefore,thedopingofgearoilwithadditionaladditives,especiallyfoaminhibitors,shouldonlybeattemptedunderthecarefulguidanceofthelubricantsupplier.Theadditionofimproperortoomuchadditionaladdi-tive(s)canleadtomajorgeardriveoperationalproblemsandpossibleirreversibledamagetothegearsand/orbearings.AlsoseeA.9.A.2Cleanliness
Althoughlubricantsareproducedunderrelativelycleanconditions,theycantravelthroughmanyconduitsandbeplacedinintermediatestoragetanksbeforebeingpackaged.Additionally,theymaybetransportedinbulktotheenduser’sfacilitybeforebeingstoredindrumsorinabulktank.Thishandlingprovidesmanyopportunitiesforcontaminantssuchaselastomericparticles,metalflakes,scale,rustand/orsandtobeintroducedintothelubricantbeforeitisinstalledin,orappliedto,machinery.
Storagetankscanbeasourceofparticulatecontaminationifairbreathersarefittedimproperlyorareabsent.Anassessmentofalubricant’scleanlinesspriortoputtingitintoserviceishighlyrecommended.Duringalubricant’sservicelifeitmayhaveopportunitytobecontaminatedwithparticulatematterfrompoormaintenancepractices,theoperatingenvironment(airborneparticulates),themachinery(wear),andoildegradation
byproducts.Cleanlinessassessmentsoflubricantswhiletheyareinserviceenabletheendusertotakeappropriatecorrectiveactionbeforeirreversibledamageoccurstothelubricatedequipmentcomponents.
Lubricationsystemcleanlinessreferstothedegreetowhichmachineryisfreeofcontaminants.Althoughmanufacturers,rebuilders,endusers,etc.mayexercisecareduringthemanufacturing,assembly,packaging,shippingandinstallationofgeardrives,theingressofcontaminantsisinevita-ble.Dependingonthesizeandtypeofgeardriveinstallation,foundrysand,machiningchips,grindingdust,weldsplatter,dirt,scaleorothercontaminantscanbepresentingeardrivespriortotheirbeingplacedintoservice.
Whileseveralmethodshavebeenusedtodefinelubricantcleanliness,thecurrentpracticeistouseISO4406[3]cleanlinesscodelevels.Inthisstandard,thenumberandsize(inmicrometers)ofsolidparticlesinamilliliteroffluidisdeterminedusinganapprovedlaboratoryparticlecountingprocedure.Fromthesevalues,acleanlinessratingisdetermined.
Geardrivesutilizingoilcirculatingsystemsshouldbemonitoredtoinsurethattheoilchargein--serviceandmake--upoilarefreeofsolidcontaminants.Circulatingoilsystemsshouldbeequippedwiththeappropriatein--linefiltrationtoachievetheoilsys-tem’stargetcleanlinesslevel.Theuseofauxiliaryorkidneyloopfiltrationmayberequiredtoreachthetargetcleanlinesslevelifin--linefiltrationaloneisnotsufficient.Consultthelubricantandfiltersuppliertoinsurecompatibilityofthefilterwiththelubricantandtodeterminethemostappropriatefilterratingfortheapplicationandlubricantused.
Sump/splashlubricatedgeardrivesmanytimesdonothaveafiltrationsystem.Inthesecases,thelubricantmayneedtobechangedonatimescheduledbasistominimizethepresenceofparticu-lateand/orwatercontamination.Theuseofportablefiltrationdevicestoremovecontaminantshas
11
ANSI/AGMA9005--E02provenbeneficialinextendingtheservicelifeofthesegearoils.
Routineoilsamplingandconditionanalysis,whenpractical,arebeneficialforallenclosedgeardrives.Theoilshouldbereplacedwhenitsdegradationorlevelofcontaminationexceedspredeterminedlim-its.Theselimitsaretypicallysetonacasebycasebasisafterreviewingtheoperatingconditionandenvironmentofthegeardrive.Thispracticecanprovideincreasedprotectionofthegeardrivefromwearduetoparticulateand/orwatercontamination.SeeannexE.A.3Compatibility
Mineraloilsarethemostwidelyusedlubricantand,ingeneral,arecompatiblewithmostpaint/coatingsandrustpreventatives.Traditionally,mineraloilsandmineraloilsformulatedwithantiwearorantiscuff(EP)additivesformedthebasisfordrivegearlubrication.Enclosedgeardrivematerialswereselectedwiththeunderstandingtheywouldbeexposedtomineraloil.
Incontrasttomineraloils,whichingeneralhavesimilarproperties,syntheticlubricantscanbeverydifferent.Whenselectingsyntheticlubricantsspe-cialcareisneeded.Awidevarietyofsyntheticlubricantsareavailable,butonlyafewarecommonlyusedforgearlubrication.Theseincludesynthetichydrocarbons,particularlypolyalphaolefins(PAO),polyalkyleneglycols(PAG),andvariousesters.Polyalphaolefinsarecompatiblewithmineraloils,sothereislessriskinusingtheseoverothersynthetics.Polyalkyleneglycols,ingeneral,arenotcompatiblewithmineraloils,soextracautionisneededwhentheseareselected.PAG’sarenotcompatiblewithmanypaints,althoughepoxypaintisacceptable.Compatibilityofthegearlubricantbeinginstalledwiththerustpreventativeusedtocoatthegearsandinternalsurfacesofthegearboxshouldbecheckedandassessed.Properflushingmayfirstberequired.Theresidualpresenceofsomerustpreventativeshasbeenknowntocauseexcessivefoaming.Estershavesignificantlymorerestrictionswhenusedwithcommonlyusedsurfacetreatments.Itisrecom-mendedtoleavesurfacesunpaintedwhenusingesters.Ifsurfacesmustbepainted,useanepoxypaint.Acrylicpaintsshouldnotbeusedwithesters.Anothercategoryoflubricantscalledsemi--synthet-icsisablendofsyntheticandmineraloil.Blendscan12
AMERICANNATIONALSTANDARD
beequalpartsofsyntheticandmineraloil,butingeneral,mineraloilmakesupthegreaterpercent-age.Checkwhattypesyntheticisusedandrefertothesyntheticinformationaboveorconsultthelubricantsupplier.A.4Corrosion
Thereareseveraltypesofcorrosiontestsforpetroleumproductsdependingupontheclassifica-tionortheapplicationofthelubricant.Inordertoexaminethecorrosioncharacteristicsofalubricant,testsaredefinedforconditionsthatapproximatetheconditionsencounteredinservice.Ingeneral,properlyformulatedgearlubricantsarenotconsid-eredcorrosivetosteelorcoppercontainingalloys.Thecorrosiontestmethodsusedinthisstandardareintendedtomeasuretheabilityofalubricanttopreventcorrosiononametalsurfaceincontactwithoil.Thesetestsindicatethetendencyofthelubricanttopreventcorrosionofthegearsandbearingswhileinserviceundernormaloperatingconditions.Ifadverseconditionsareexpected,suchashighoperatingtemperaturesorhighcontaminationlev-els,otherconsiderationsmayberequiredtoprotectsteelandcupricmetalpartsfromcorrosiveattack.TheISO2160/ASTMD130coppercorrosiontestmethodmeasuresthecorrosivenatureoflubricatingoilonacopperstripthatisimmersedunderstaticconditionsintheoil.Sulfurcontainingcompoundsarethemainsourcesoftarnishingorcorrodingofthecopperandcupricmetalalloys.Theextentofthereactivityofthecopperwiththeoilisclassifiedbycomparingtheappearancetostandardcoupons.Themethodconsistsofplacingapolished,cleanedcopperstripinatesttubewiththeoilsample.Thetestmayberunfor3hoursateither100°Cor121°C.Discolorationofthecopperismatchedagainstreferencestandardsandtheoilisratedonascaleofincreasingcorrosivityfrom1to4.Anacceptablegearoilisrequiredtohaveamaximumratingof1b,whichisconsideredslighttarnish.
TheISO7120/ASTMD665testmethodevaluatestheabilityofanoiltopreventtherustingofferrouspartsintheeventwaterbecomesmixedwiththeoil.Themethodconsistsoftwoparts:ProcedureAusingdistilledwater,andProcedureBusingsyntheticseawater.Inthistestmethod,10%water(distilledorsyntheticseawater)ismixedintheoilandapolishedASTM1018gradecarbonsteelrodisimmersedinthestirredmixturefor24hoursat60°C.Ifthereisno
AMERICANNATIONALSTANDARDrustonthespecimen,theoilpassesthetest.AGMA9005--E02requiresgearoilstopassProcedureB.A.5Demulsibility
Demulsibility,alsoknownaswaterseparation,istheabilityofalubricatingfluidtoseparatefromwater.Thedemulsibilitytestmethodforgearoilsusedinthisstandard,ASTMD2711,isalsoknownastheWheelingsteeldemulsibilitytest.Itwasdevelopedtomeasurethewaterseparationpropertiesofoilsusedtolubricatesteelrollingmillstands.IntheASTMD2711,ProcedureAtestmethod,405mLofoiland45mLofwaterarestirredtogetherat4500rpmfor5minutesinaseparatoryfunnelat82°C.Aftersettlingfor5hours,a50mLsampleiswithdrawnfromnearthetopandcentrifugedtodeterminethe“percentageofwaterinoil,volume,%”.Thefreewaterisdrainedfromthebottomofthefunnel,andthenasecondvolumeof100mLofoilandwateremulsioniswithdrawnandcentrifuged.Theinitialamountoffreewaterdrawnoffplusthecentrifugedwaterisrecordedas“totalfreewater”.Theamountofwaterandoilremainingasemulsionaftercentrifugingisrecordedas“emulsion,mL”.Thismethodwasdevelopedspecificallyforrustandoxidationinhibitedoils.Forantiscuff/antiwear(EP)gearoils,themethod,knownasProcedureB,ismodifiedbyreducingtheamountofoilto360mL,increasingthewaterto90mL,andslowingthestirrerspeedto2500rpm.
A.6Elastomercompatibility
Lubricantcompatibilitywithelastomerscanbemeasuredinanumberofwaysdependingonthesealingsystemanditsrequirements.Twomajormethodsarestaticimmersiontestinganddynamictesting.Dynamictestsrequirespecialrigsandareoftenconductedtoanequipmentmanufacturer’spreferreddutycycle.Atestcanlast500to1000hoursormore.Dynamictestingisusuallyassessedbyquantifyingtheamountofleakagethatoccursduringthecourseofthetest.Whencomplete,sometestproceduresrequireadditionalanalysisofthesealitself.Thisalsorequiresspecializedequipment,whichisusuallyonlyavailableatthesealvendor’slaboratory.
Staticimmersiontestsarepopularandrelativelysimpletoconduct.ASTMD5662[4]isanexampleofsuchamethod.Thetestusuallyconsistsofsuspendingsamplesoftheelastomerinaglasstesttubecontainingtheoiltobeassessed.Thetesttube
ANSI/AGMA9005--E02
isplacedinacontrolledheatedbathforaspecifiedlengthoftime.Attheendofthespecifiedtimetheelastomersamplesareremovedandrinsedwithahydrocarbonsolventtoremovetheoil.Theelasto-meristhenevaluatedforchangesinvolume,hardness,andelongation.
AlthoughASTMD5662specifiescertainelastomertypesandtestconditions,thesecanbemodifiedtoaccommodatetheneedsofspecificenduserapplications.Regardlessofthemethodchosentodetermineelastomercompatibility,itisalwaysrec-ommendedthattheresultsarecomparedwithastandard,ortheresultsobtainedwithareferenceoil,preferablyonewithapositivefieldservicehistory.A.7Filterability
Oilwithpoorfilterabilitycharacteristicswillplugfiltersandcancauseinadequatelubricationofvitalmachinecomponents.Ithasbeenfoundthatthepoorfilterabilitycharacteristicsofsomeindustriallubricantsarecausedbytheuseofcertainbasestocksoradditives,orthecombinationofcertainbasestocksandadditives.Filterabilityhasbeenassessedbyseveralmethods,withISO13357--1[5]and13357--2[6]thefirsttobecomewidelyaccepted.Equipmentmanufacturershavelongbeenawareoftheimportanceoffilterability.Severalhavedevel-opedin--housefilterabilitytestmethods.AswithISO13357--2,someofthemethodsdeterminethetimetofilteraquantityofwater--freeoilthroughaspecifiedfilterunderprescribedconditions.
Sincemanytypesoffiltermediaareadverselyaffectedbythepresenceofwater,somefilterabilitytestmethodslikeISO13357--1willmeasurethefilterabilityofamixtureofoilandwaterafterithasbeensubjectedtoanagingprocedure.Thistestmethodismeanttosimulatein--serviceconditionsandtoassesswhetherfiltrationefficiencyisimpairedaftertheoilhasbeeninserviceforsometime.A.8Flashpoint/firepoint
Flashpointistheminimumtemperatureofapetroleumproductorothercombustiblefluidatwhichvaporisproducedataratesufficienttoyieldacombustiblemixture.Specifically,itisthelowestsampletemperatureatwhichtheair/vapormixturewill“flash”inthepresenceofasourceofignition.Firepointistheminimumsampletemperatureatwhichvaporisproducedatasufficientratetomaintaincombustion.Specifically,itisthelowestsampletemperatureatwhichtheignitedvapor
13
ANSI/AGMA9005--E02persistsinburningforatleast5seconds.Thefirepointofcommercialpetroleumoilsisnormallyapproximately30°Cabovethecorrespondingflashpoint.Firepointiscommonlyomittedfrompetro-leumproductdatasheets.
Flashandfirepointshaveobvioussafetyconnota-tions.Itisassumedthatthehighertheflashpoint,thelessthehazardexistsforfireorexplosion.Ofcomparablesignificanceistheirvalueinprovidingasimpleindicationofvolatility,wherealowerflashpointdenotesamorevolatilefluid.ThedilutionofagearoilwithafluidsuchasStoddardsolvent,forexample,cansignificantlylowertheflashpointofthelubricant,andwouldbedetectedbyperforminganISO2592/ASTMD92flashpointtest.
Flashandfirepointsshouldnotbeconfusedwithauto--ignitiontemperature,thetemperatureatwhichcombustionoccursspontaneouslywithoutanexter-nalsourceofignition.A.9Foaming
Foaminginagearoilcanbedetrimentaltotheperformanceanddurabilityofthegeardriveinwhichitisbeingused.Itcanalsocreatehousekeepingproblemsifitescapestheconfinesofthegeardrive.Foaminginalubricantmaybecontrolledthroughtheuseofafoaminhibitor.Theseadditivescausethefoamtodissipatemorerapidlybypromotingtheagglomerationofsmallbubblesintolargebubbleswhichburstmoreeasily.Foaminhibitorsarecommonlyproducedfromsiliconesorotherpoly-mericcompounds.AlsoseeA.1.A.10Coefficientoffriction
Frictionistheresistancetomotionthatisexperi-encedwhentwosurfacesincontactareforcedtosliderelativetoeachother.Morespecifically,frictionistheresistingforcetangentialtothecommonboundarybetweentwobodieswhen,undertheactionofanexternalforce,onebodymovesortendstomoverelativetothesurfaceoftheother.Itiscommontoexpressthisasthecoefficientoffrictionratherthantheabsolutevalue.Coefficientoffrictionistheratioofthetangentialforceresistingmotionbetweenthetwobodiestothenormalforcepressingthesebodiestogether.Itcanbeinfluencedbymaterial,texture,fluidlubricity,lubricantadditivesystem(s),andoperatingconditions.
Twotypesoffrictionareconsideredinmostapplica-tions:staticorbreakaway;and,dynamicorkinetic.14
AMERICANNATIONALSTANDARD
Theirimportanceisafunctionoftheapplicationinwhichtheyarebeingmeasured.Inlubricatedsystemsthestartingfriction,generallyreferredtoasthestaticfriction,isoftenhigherthanthekineticfriction.Forlowspeedapplicationsorthosethatencounterstart--stopsituations,thiscouldbeacriticalparametertoobtainingsmoothoperation.Highstaticvaluesrelativetothoseobtainedathigherspeedscouldbeindicativeofastick--slipphenome-naandcouldbeassociatedwithscuffingonamicroscale.Thestick--slipphenomenawillgenerallymanifestitselfasnoiseorvibration.Thisismostimportantinclutchtypeapplications.Forgears,thecoefficientoffrictionisanindicatoroftheefficiencyofthesystem.Excessivelyhighfrictionvaluesareindicativeofscuffing.
Thecoefficientoffrictionofanysystemcanbemeasuredifoneknowstwoparameters:thenormalforceactingonthecontact;and,thereactionforcethatresultswhenthebodiesareputinmotion.Mosttribometersusedinlaboratoriestodayhavethiscapability.Thesewouldincludeconfigurationssuchasthefourballtester,pin--on--disk,ring--on--block,disk--on--disk,ball--on--flat,andtwo--diskmachinestomentionjustafew.
Therealissueisdefiningtherelationshipbetweenthelaboratorytestandthecomponentinactualpractice.Thisincludesmatchingthecontactmateri-als,surfaceroughness,andoperatingconditions,amongothers.Sincemostsystemsarevariable,arangeofconditionsislikelyrequiredtodefinethefrictionenvelope.
A.11Oxidationresistance&thermalstabilityOxidationisachemicalprocessinwhichoxygencombineswiththefreeradicalswithinalubricanttoproduceacidsthatcancorrodemetals,andpoly-mersthatproducesludgeformation.Anotherproductofoxidationisanincreaseinviscosity.Oxidationisenhancedbyelevatedtemperatureandthepresenceofacatalystsuchasiron,copper,waterorforeignmatter.Thermalstabilityisoften,butinappropriately,interchangedwithoxidation.Ther-malstabilityisthepropertyofalubricantthatcharacterizesitsrelativechemicalstabilityinre-sponsetothermalstress.
Athermallyunstablecompoundcandecomposeinresponsetoheatalone,withoutthecontributionoftheoxidativeprocesses.Thermaldecomposition,likeoxidation,maybecatalyzedbymetals,water,orotherchemicalcompounds.Thermalbreakdown
AMERICANNATIONALSTANDARDproductsmaythemselvesbereactiveandpromoteoxidation,corrosion,orsludgeformation.
Theoutcomesofoxidationandthermalbreakdownarecloselyrelated,andtheneteffectmaybereferredasthermo--oxidative.However,theseprocessesshouldbedistinguishedseparatelybe-causeinanygivenlubricantformulationtheymaybewidelydivergent.ISO4263/ASTMD943,ASTMD2893(95°C),ASTMD5763(120°C)[7]andASTMD4871[8]aremethodsusedtodeterminetheoxidativecharacteristicoffluidlubricants.TheASTMD5579[9]CincinnatiMilicronthermo--oxida-tivetestisanothermethodusedtodeterminethethermalstabilityofafluidlubricant.
Oxidationisanimportantmeasureofthefunctional-ityandusefulservicelifeofalubricant.Alubricant’sbaseoilandadditivepackageareequallyimportantdeterminantsofitsoxidationlife.Operatingtemper-ature,however,isnormallythemostinfluentialvariableimpactingtherateofoxidation.Inanygeardrive,localizedheating(“hotspots”)mustbetakenintoaccount,inadditiontobulklubricantoperatingtemperature.Theseareasoflocalizedheatingcanbesiteswhereacceleratedoxidativeagingandthermaldecompositionoccurs.Examplesoflocal-izedheatingincludeinstantaneousfrictionalheatatthemeshpointofthegearteeth(referredtoasflashtemperature),thepointofhighestloadinsupportbearings,andthesurfacesofheatingdevicesthatcomeindirectcontactwiththelubricant.A.12Pourpoint
Pourpointisanindicatorofthelowesttemperatureatwhichanoilflowsundertheinfluenceofgravity.Pourpointshouldnotbeusedastheonlyindicatorofthelowtemperaturelimitatwhichalubricantmayfunctionacceptably.Initialagitationbygears,bearingsorapumpcanbreakdownthecrystalwaxstructureofparaffinicoilsandallowthegearoiltoflowortobepumpedattemperatureswellbelowitspourpoint.Naphthenicandsyntheticlubricatingoilscontainlittleornowaxandreachtheirpourpointthroughincreaseinviscosity.ISO3016/ASTMD97[10]isusedtodeterminepourpoint.Itisrecom-mendedthatthepourpointoftheoilusedshouldbeatleast5°Clowerthantheminimumambienttemperatureexpected.
ANSI/AGMA9005--E02
A.13Viscosity--kinematic
Theviscosityofaliquidlubricantorasemi--solid(grease)lubricant’sbasefluidmaybedeterminedusingvarioustestmethods.Historically,thesehaveincludedtheSaybolt,Kinematic,EnglerandRed-woodtestmethods.Withthesetestmethods,viscosityis2reportedasSayboltUniversalSeconds(SUS),mm/s(cStorcentistoke),degreesEnglerandRedwood,respectively.TheInternationalOrganizationforStandardization(ISO)classifiesandspecifiesfluidlubricantsusingkinematicviscos-ity.AGMA,aswellasmanynationalstandardsorganizationssuchasAFNOR(AssociationofFrenchNormalization),ASTM(AmericanSocietyforTestingMaterials),ANSI(AmericanNationalStan-dardsInstitute),BSI(BritishStandardsInstitute)andDIN(GermanInstituteforNormalization)haveadoptedtheISO3104/ASTMD445methodofmeasuringandspecifyingfluidviscosity.Thepreferredunitforkinematicviscosityismm2/s,commonlyreferredtoascentistoke(cSt).
Forfluidclassificationpurposes,theviscosityofalubricantisstatedatastandardtemperature,e.g.,ISO3448specifiesviscosityat40°C.However,geardrivesrarelyoperateat40°C.Viscosityofthelubricantatoperatingtemperaturemustbecorrectforoptimalgeardriveperformanceandservicelife.AlthoughAGMAanddrivemanufacturersmayprovidesuggestedlubricantviscositygradesforgeneralapplications,theseareguidelinesbasedonanassumedbulklubricantoperatingtemperatureofapproximately50°Cto65°C.
A.14Viscosity--dynamic(Brookfield)
TheBrookfieldviscosityreferstothedynamicviscosityofalubricantasmeasuredatlowshearratebyarotatingspindleinaBrookfieldviscometer.Thedynamicviscosityiscommonlyreportedinunitsofcentipoise,cP,andisrelatedtothekinematicviscosityasfollows:
Dynamicviscosity(cP)=Kinematicviscosity(cSt)×Density(g/mL)
(wherealltermsaremeasuredatthesametem-perature)
NOTE:IntheInternationalSystemofUnits(SI),1cSt=1mm2/sand1cP=1mPa⋅s.
TheBrookfieldviscosityisfrequentlyusedasameasureoftheflowabilityorfluidityofautomotivegearandtransmissionlubricantsatlowtemperature.Intheearly1970s,theSocietyofAutomotive
15
ANSI/AGMA9005--E02EngineerschosetheBrookfieldviscosity,asmea-suredbyASTMD2983,tocategorizelowtempera-tureflowintheSAEJ306[11]viscosityclassificationsystem.
Studies[12,13]haveshownthattheBrookfieldviscositycorrelatesverywellwiththetimerequiredtoadequatelylubricateanautomotivedifferential.TestingofaxlesincoldroomsatGeneralMotorsResearchestablishedacriticallubricantviscosityvalueof150,000cP[12].Viscositiesabovethisvaluewereassociatedwithfailuresduetoinade-quatesplashlubrication,particularlyinthefrontpinionbearing.
FurtherworkwithaxleteststandsatAutoResearchLabs,Inc.producedanexcellentcorrelationbe-tweenthetemperatureforaspecificaxlelubricationtimeatcoldstartandthetemperatureatwhichthelubricantachievedaBrookfieldviscosityof150,000cP[13].TheauthorsconcludedthattheBrookfieldviscositywasthebestmethod,comparedtochannelpointandpourpoint,forevaluatingandspecifyingthecoldfluiditypropertiesofautomotivegearoils.Basedontheexperienceofautomotivegearmanufacturers,thesamecriticalBrookfieldviscositylimitof150,000cPhasbeenproposedforindustrialgearapplications.Becauseofthewidevarietyoffieldconditions,thetemperatureforthemaximumBrookfieldviscosityisnotspecifiedinthisstandard.Rather,thetemperatureshouldbespecifiedbytheenduseranditshouldrelatetothelowestactuallubricanttemperatureatcoldstartup.A.15Viscosityindex
Theviscosityindex(VI)offluidlubricantsandthebasefluidofsemi--solidlubricants(greases)isinternationallydeterminedusingISO2909.Alubricant’sVImaybeanaturalphysicalpropertyofthebasefluid,ortheresultofchemicalenhancementthroughtheadditionofaVIimprover.VIimproversaretypicallypolymers.LowmolecularweightpolymerVIimproversaregenerallymoreresistanttosheardegradationthanhighmolecularweightpolymerVIimprovers.WhenconsideringtheuseofagearoilwithahighVI,itisimportanttoselectaproductthatretainsitsVIovertheexpecteddrainandchangeinterval.SelectingaproductcontainingaVIimproversusceptibletosheardegradationcannegatetheanticipatedadvantagesofusingahighVIgearoil.16
AMERICANNATIONALSTANDARD
AgearoilwithalowVImaybeacceptableinapplicationswhereambientstartuptemperaturesremainconstant,thedriveoperatingtemperaturevariesminimally,orthedriveoperatingtemperatureisclosetotheambienttemperature.TheuseofagearoilwithaVIgreaterthan120maybedesirableinapplicationswhereambientstartuptemperaturesaremuchlowerthannormaloperatingenvironmentorwhenambienttemperaturesvarywidely.Althoughviscosityindexisanindicatorofalubri-cant’sflowabilityoverabroadtemperaturerange,itdoesnotestablishitsminimumormaximumoperat-ingtemperatures.Pourpoint,thermalstabilityanddurability,oxidationresistanceandotherpropertiesofthefluidmustalsobeconsideredwhenselectingtheappropriatelubricant.Forexample,agearoil’spourpointmaynotbeanylowerinahighVIproductthaninalowVIproduct.A.16Wearmodes
SeeANSI/AGMA1010--E95[14].
Abrasivewear--Abrasivewear,orabrasion,iscausedbythedisplacementofmaterialfromasolidsurfaceduetohardparticlesorprotuberancesslidingalongthesurface.Abrasivewearisalsoreferredtoasrubbingwearorpolishing.Thiswearprocessinvolvestheremovalofmaterialasaresultofatwoorthree--bodyinteractionbetweenthecontactingsurfaces.
Adhesivewear--Adhesivewearhasbeenidenti-fied,withvaryingdegreesofaccuracy,bythetermsscoring,galling,seizing,andscuffing.Thiswearmodeinvolvesthetransfer(loss)ofmaterialfromonesurfacetoanotherasaresultofawelding--tearingprocessduringthetwoorthree--bodyinteractionbetweenthecontactingsurfaces.Itisbroughtaboutinlubricatedapplicationsbylossofsupportingfilmand/orinadequateprotectionofthesurface(s).
Corrosivewear--Thiswearmodeislossofmaterialfromasurfaceduetoaggressivechemicalactiononthematerial.Thiscanbeduetosomeinherentpropertyofthefluidoraresultofsomeexternalcontaminantthatactsinacorrosivemanner.Erosivewear--Alsoreferredtoaserosion,thiswearmodeisthelossofmaterialfromasolidsurfaceduetorelativemotionincontactwithafluidthatcontainssolidparticles.Thetermabrasiveerosionissometimesusedtodescribeerosioninwhichthesolidparticlesmovenearlyparalleltothesolid
AMERICANNATIONALSTANDARDsurface;thetermimpingement,orimpact,erosionisusedtodescribeerosioninwhichtherelativemotionofsolidparticlesisnearlynormaltothesolidsurface.Fatiguewear--Fatigueisanagingprocesscommontoallsolids.Itisaprogressive,localizedpermanentstructuralchangeinmaterialssubjectedtofluctuatingstressesandstrainssuchasgearsandrollingelementbearings.Thenumberofcyclesofstressandstrainbeforefailureoccursisreferredtoasthefatiguelife.Whenmaterialssuchassteelaresubjectedtocyclicdeformation,surfaceandsubsur-facemicrocracksdevelopatgrainboundaries.Surfacefatiguecracksmaybeinitiatedbyvarioussurfaceimperfectionssuchasscratches,dents,imbeddeddebris,orbyhardcontaminantparticlesinthelubricantpassingthroughthecontactzone.Asperitiesmayalsobeviewedassurfaceimperfec-tionsthatmaylimitfatiguelife.
Subsurfaceinitiatedcracksareoftenassociatedwithhardinclusionsinthemetalatapointofmaximumshearstress,which,intheidealcase,occursbelowthesurface.Withcontinuingcycles,microcracksgrowandpropagateuntilalossofmaterialfromthesurfaceoccurs,usuallyintheformoflarge(relative)flakesorareas.Pitsvisibletothenakedeyeonthepressureflanksofgearteethortheracewaysofrollingelementbearingsareexamplesofsurfacefatigue.
Surfaceinitiatedcracksmaypropagateintheareaofnewsurfacestressduetoimperfections.Whenthisoccurs,itispossibleformanysmall(10--20mm)pitstobeformedresultinginthephenomenonknownasmicropitting.SurfaceinitiatedcracksmayalsopropagatebelowthesurfaceintotheregioninwhichthehigherHertzianstressesdominate.Inthiscase,individuallargerpitsorspallsmaybeformed.Industrialoilsoftencontaindissolvedordispersedwater.Thepresenceofwaterinalubricantmayreducefatiguelifeofwearcomponentsbythemechanismofhydrogenembrittlement.Additivessuchasrustinhibitorsanddemulsifiersmay,in
ANSI/AGMA9005--E02
additiontotheirintendedfunction,overcomethedeleteriouseffectofwateronfatiguelife.
Thefactorsinfluencinggearandbearingfatiguearecomplexandofteninterdependent.Additionally,theresponseoflubricantadditivesisdependentonconditionssuchastemperature,rollingandslidingvelocities,andcontactstress.Ideally,testingforpredictingfatiguelifeshouldminimallybecarriedoutatthecalculatedorknowncontactstressandrolling/slidingvelocitiesexpectedintheapplication.Lubricantviscosity,moisture,surfacefinishandtemperatureshouldalsobecarefullyselectedforeachapplication.
Thephysicalandchemicalpropertiesofthelubricantcansignificantlyaffectfatiguelife.Properselectionoflubricantviscosityhelpsprolongfatiguelifebyprovidingtheappropriatefilmthicknesstoseparatethesurfacesunderoperatingconditions.Lubricantadditives,especiallythosethatimpartantiwearorantiscuff(EP)propertiescanhaveasignificanteffectonfatiguelife,bothpositiveandpotentiallynegative.Becausetestingreportedinliteratureusuallyusegenericterminologyforadditivesandbaseoils,andbecausetheeffectsonfatiguelifearechemistryspecific,itisimportanttoevaluateindividuallubri-cant--applicationcombinationsforfatigueproper-ties.
Frettingwear--Frettingwearisaphenomenonthatoccursbetweentwocloselymatedsurfaces.Itisinitiallyadhesiveinnature,beingcausebyvibrationorsmall--amplitudeoscillation.Frettingisfrequentlyaccompaniedbycorrosion.Ingeneral,frettingoccursbetweentwotight--fittingsurfacesthataresubjectedtoacyclic,relativemotionofextremelysmallamplitude.Frettinggenerallyoccursatcontactingsurfacesthatareintendedtobefixedinrelationtoeachother,butactuallyundergominutealternatingrelativemotionthatisusuallytheresultofvibration.Forexample,frettingcorrosioniscom-monlyencounteredasareddish--blackstainingofthesurfacesoftheboreofabearinghousingandtheouterringofthebearing.
17
ANSI/AGMA9005--E02AMERICANNATIONALSTANDARD
AnnexB(informative)
Guidelineforlubricantviscositygradeselection
[Theforeword,footnotesandannexes,ifany,areprovidedforinformationalpurposesonlyandshouldnotbeconstruedasapartofANSI/AGMA9005--E02,IndustrialGearLubrication.]
B.1Guidelines
IntheabsenceofarigorousEHDanalysis,thefollowingtablesareofferedfortheusertoselectanappropriateviscositygradefortheirapplication.Theviscosityselectionmustbecomplementedwithanappropriateperformanceadditivetoprovideafin-ishedlubricantwithpropertiessufficienttomeettheoverallneedsoftheapplication.TablesB--1throughB--4,forspur,helicalandbevelgears,providetheestimatedISOviscositygradesforagivenoperating18
temperature–pitchlinevelocitycombinationcover-ingfourrepresentativeviscosityindextypefluids.Forthepurposeoftheseestimates,operatingtemperatureswereassumedtobenominally45°Cabovetheambienttemperature.TablesB--5andB--6provideguidelinesforcylindricalandgloboidalwormgearing.Inthecaseofmultiplereductiongeardrives,itisrecommendedtousethepitchlinevelocityforthelowestspeedmesh.Considerationshouldbegiventotheviscosityrequirementsofthebearingsintheseinstances.
AMERICANNATIONALSTANDARDANSI/AGMA9005--E02
B.2Spur,helicalandbevelgears
TableB--1--Viscositygrade1)atbulkoiloperatingtemperatureforoils
havingaviscosityindexof902)
Temp°C101520253035404550556065707580859095100NOTES:1)1.0--2.532466868100100150220320460460680100015002200320032002.532464668100100150220220320460680680100015002200320032005.0Pitchlinevelocity,m/s3)10.015.020.025.030.032324668681001501502203203204606801000100015002200324646681001001502202203204604606801000100032324646686815015022022032046046068032464668681001001502202203204604603232466868100100150220220320320460323246466868100150150220220320Consultgear,bearingandlubricantsuppliersifaviscositygradeoflessthan32orgreaterthan3200isindicated.Reviewanticipatedcoldstart,peakandoperatingtemperatures,servicedutyandrangeofloadswhenconsideringtheseviscositygrades.Selecttheviscositygradethatismostappropriatefortheanticipatedstabilizedbulkoiloperatingtemperaturerange.Baselinestabilizedbulkoiloperatingtemperatureandbearinglubricationrequirements.2)Thistableassumesthatthelubricantretainsitsviscositycharacteristicsovertheexpectedoilchangeinterval.Consultthelubricantsupplierifthisdoesnotapply.3)Determinepitchlinevelocityofallgearsets.Selectviscositygradeforcriticalgearsettakingintoaccountcoldstartupconditions.19
ANSI/AGMA9005--E02AMERICANNATIONALSTANDARD
TableB--2--Viscositygrade1)atbulkoiloperatingtemperatureforoils
havingaviscosityindexof1202)
Temp°C101520253035404550556065707580859095100NOTES:1)1.0--2.5324668681001501502203203204606801000100015002200220032002.532464668100100150220220320460460680100010001500220022005.0Pitchlinevelocity,m/s3)10.015.020.025.030.03232466868100100150220320320460460680100010001500323246466810010015015022022032046046068068032324668686810015015022022032032046032464668681001501502202203203204603232464668100100150150220220320320324646466868100100100150220220Consultgear,bearingandlubricantsuppliersifaviscositygradeoflessthan32orgreaterthan3200isindicated.Reviewanticipatedcoldstart,peakandoperatingtemperatures,servicedutyandrangeofloadswhenconsideringtheseviscositygrades.Selecttheviscositygradethatismostappropriatefortheanticipatedstabilizedbulkoiloperatingtemperaturerange.Baselinestabilizedbulkoiloperatingtemperatureandbearinglubricationrequirements.2)Thistableassumesthatthelubricantretainsitsviscositycharacteristicsovertheexpectedoilchangeinterval.Consultthelubricantsupplierifthisdoesnotapply.3)Determinepitchlinevelocityofallgearsets.Selectviscositygradeforcriticalgearsettakingintoaccountcoldstartupconditions.20
AMERICANNATIONALSTANDARDANSI/AGMA9005--E02
TableB--3--Viscositygrade1)atbulkoiloperatingtemperatureforoils
havingaviscosityindexof1602)
Temp°C101520253035404550556065707580859095100NOTES:1)1.0--2.532466868100150150220220320460460680680100015001500220032002.532324646681001001501502202203204604606806801000150015005.03232324668681001001501502202203203204606806801000Pitchlinevelocity,m/s3)10.015.020.025.030.03232464668681001001501502202203203204604603232464668681001001501502202203203203246466868100100150150220220220320323246466868100100150150220220220323246466868100100150150150Consultgear,bearingandlubricantsuppliersifaviscositygradeoflessthan32orgreaterthan3200isindicated.Reviewanticipatedcoldstart,peakandoperatingtemperatures,servicedutyandrangeofloadswhenconsideringtheseviscositygrades.Selecttheviscositygradethatismostappropriatefortheanticipatedstabilizedbulkoiloperatingtemperaturerange.Baselinestabilizedbulkoiloperatingtemperatureandbearinglubricationrequirements.2)Thistableassumesthatthelubricantretainsitsviscositycharacteristicsovertheexpectedoilchangeinterval.Consultthelubricantsupplierifthisdoesnotapply.3)Determinepitchlinevelocityofallgearsets.Selectviscositygradeforcriticalgearsettakingintoaccountcoldstartupconditions.21
ANSI/AGMA9005--E02AMERICANNATIONALSTANDARD
TableB--4--Viscositygrade1)atbulkoiloperatingtemperatureforoils
havingaviscosityindexof2402)
Temp°C101520253035404550556065707580859095100NOTES:1)1.0--2.546686810010015015022022032032046046068068010001000100015002.546466868686810010010015015022032032046046068068010005.0323232326868100100150150150220220220320320460460Pitchlinevelocity,m/s3)10.015.020.025.030.0323232464668686810010015015015022022032032032323246466868100100100100150150150220323232464668686810010010015015015032324646466868681001001001501503232464646686868100100100Consultgear,bearingandlubricantsuppliersifaviscositygradeoflessthan32orgreaterthan3200isindicated.Reviewanticipatedcoldstart,peakandoperatingtemperatures,servicedutyandrangeofloadswhenconsideringtheseviscositygrades.Selecttheviscositygradethatismostappropriatefortheanticipatedstabilizedbulkoiloperatingtemperaturerange.Baselinestabilizedbulkoiloperatingtemperatureandbearinglubricationrequirements.2)Thistableassumesthatthelubricantretainsitsviscositycharacteristicsovertheexpectedoilchangeinterval.Consultthelubricantsupplierifthisdoesnotapply.3)Determinepitchlinevelocityofallgearsets.Selectviscositygradeforcriticalgearsettakingintoaccountcoldstartupconditions.22
AMERICANNATIONALSTANDARDANSI/AGMA9005--E02
B.3Cylindricalandgloboidalwormgearing
TableB--5--ISOviscositygradeguidelinesforenclosedcylindricalwormgeardrives1)2)
Pitchlinevelocityoffinalreductionstage
ISOviscositygradesAmbienttemperature,°C--40to--10--10to+10+10to+55220460680220460460Lessthan2.25m/sAbove2.25m/sNOTES:1)Wormgearapplicationsinvolvingtemperaturesoutsidethelimitsshownabove,orspeedsexceeding2400rpmor10m/sslidingvelocityshouldbeaddressedbythemanufacturer.Ingeneral,forhigherspeedsapressurizedlubricationsystemisrequiredalongwithadjustmentsintherecommendedviscositygrade.
2)
Thistableappliestolubricantswithviscosityindexof100orless.Forlubricantswithviscosityindexgreaterthan100,widertemperaturerangesmayapply.Consultthelubricantsupplier.
TableB--6--ISOviscositygradeguidelinesforenclosedgloboidalwormgeardrives1)2)
Centerdistanceoffinalreduction
stageUppto305mm
ISOviscositygradesAmbienttemperature,°C--10to+1010to35680100046068032046068010004606803204606801000460680320460Over305mmto610
mm
Over610mm
Wormspeedoffinalreductionstage,rpm
<300300--700>700<300300--500>500<300300--600>600--40to--1046032022046032022046032022035to55150010006801500100068015001000680NOTES:1)Wormgearapplicationsinvolvingtemperaturesoutsidethelimitsshownabove,orspeedsexceeding2400rpmor10m/sslidingvelocity,shouldbeaddressedbythemanufacturer.Ingeneral,forhigherspeedsapressurizedlubricationsystemisrequiredalongwithadjustmentsinrecommendedviscositygrade.
2)
Thistableappliestolubricantswithviscosityindexof100orless.Forlubricantswithviscosityindexgreaterthan100,widertemperaturerangesmayapply.Consultthelubricantsupplier.
23
ANSI/AGMA9005--E02AMERICANNATIONALSTANDARD
AnnexC(informative)
Guidelinefordetermininglubricanttypebasedonapplication
[Theforeword,footnotesandannexes,ifany,areprovidedforinformationalpurposesonlyandshouldnotbeconstruedasapartofANSI/AGMA9005--E02,IndustrialGearLubrication.]
TableC--1providesageneralguidelinetoaidinthechoiceoflubricantclassificationtobeusedinagivenapplication.ConsulttheOEMandlubricantsupplierwhenconsideringtheuseofoilscontainingextreme
pressure/antiscuff,antiwearorfrictionmodifiersinwormgearingordriveswithinternalbackstopsorloadbrakes.
TableC--1--Lubricantclassificationguidelines
Operationofdrivingunit
UniformLightshocksModerateshocksHeavyshocksUniformROROEPEPOperationofdrivenunitLightshocksModerateshocksRO/EPEPRO/EPEPEPEPEPEPHeavyshocksEPEPEPEPNOTE:1.ROareinhibitedoils.
EPareantiscuff/antiwearoils.
2.CompoundedoilsarenotincludedintableC--1becausetheyarespecializedoilsgenerallyrestrictedtowormgearapplications.
TableC--2--ExamplesofoperationfordrivingunitsastheyrelatetotableC--1
ModeofoperationDrivingunitUniformElectricmotor,steamorgasturbineoperatinguniformly,i.e.,low,infrequentstartingtorques
LightshocksSteamorgasturbine,hydraulicorelectricmotorwithhigh,frequentstartingtorquesModerateshocksMulti--cylindercombustionengineHeavyshocksSingle--cylindercombustionengineTableC--3--Examplesofoperatingmodesofdrivenunits–industrialgears
DrivenunitModeofoperationUniformPowergenerators,uniformlyfedconveyorsorapronfeeders,lightweightelevators,packagingmachines,feeddrivesofmachinetools,fans,lightweightcentrifuges,rotarypumps,agitatorsandmixersforlightfluidsorsubstancesofuniformdensity,cutters,presses,punches,rotaryunits,driveunits
LightshocksIntermittentlyfedconveyorsorapronfeeders,maindriveofmachinetools,heavyele-vators,rotaryunitsofcranes,industrialandminingfansystems,heavycentrifuges,
rotarypumps,agitatorsandmixersforviscousfluidsorsubstancesofvaryingdensity,multi--cylinderpistonpumps,feedingpumps,extrudersingeneral,calenders,rotarykilns,rollingmillsModerateshocksRubberextruders,intermittentlyoperatingmixersforrubberandsyntheticmaterials,lightweightballmills,woodworkingmachines,bloomingmills,liftingunits,single--cylinderpistonpumps
Excavators,bucketwheelandchaindrives,screendrives,dredgingshovels,rubberkneaders,stoneandorecrushers,miningmachinery,heavyfeedpumps,rotarydrillinginstallations,brickpresses,debarkingdrums,peelingmachines,coldbeltrollingmills,briquettepresses,edgemills
Heavyshocks24
AMERICANNATIONALSTANDARDANSI/AGMA9005--E02
AnnexD(informative)
Guidelineforlubricationofopengearing
[Theforeword,footnotesandannexes,ifany,areprovidedforinformationalpurposesonlyandshouldnotbeconstruedasapartofANSI/AGMA9005--E02,IndustrialGearLubrication.]
Lowtemperatureoperatingconditionsandthenecessityofheatingneedstobeconsideredwhendesigningthesystemandchoosingthelubricant.Considerationshouldbegiventotheneedforappliedheatingtoavoidchannelingofthelubricantinsplashlubricatedapplications.
TableD--1--Minimumviscosityrecommendationsforopengearing--Continuouslubricant
application1)Ambienttemperature,p,°C--10to+10
PressurefedIdlerimmersion
lubrication
Pitchlinevelocity2)Pitchlinevelocity2)Pitchlinevelocity2)vt<5m/svt>5m/svt<5m/svt>5m/svt≤1.5m/s220150220150680–1500Splashlubrication460460150022002200
320320680–100015001500
220460460460460
150320320320320
680–15001500--22001500--2200
46004600
TypeofoperationContinuousReversingorstart–stopContinuousReversingorstart–stopContinuousReversingorstart–stop
+10to+3030to50NOTES:1)Allviscositiesshownareinmm2/sat40°C.
2)Pitchlinevelocity=(PitchDiameterinmillimetersXRPM)÷19098=meters/second
TableD--2--Minimumviscosityrecommendationsforopengearing--Intermittentlubricant
application(vt<7.5m/s)Ambienttemperaturetemperature,
°C--10to+5+5to+2020to50Intermittentspray
Non--residuallubricant4140cStat40°C1)6120cStat40°C2)190cStat100°C3)Residualtypelubricant428.5cStat100°C4)857cStat100°C5)857cStat100°C5)Gravityfeedorforced
drip4140cStat40°C1)6120cStat40°C2)190cStat100°C3)NOTES:1)FormerlyAGMA11EPand11S.2)FormerlyAGMA12EPand12S.3)FormerlyAGMA13EPand13S.4)FormerlyAGMA14R.5)FormerlyAGMA15R.
25
ANSI/AGMA9005--E02AMERICANNATIONALSTANDARD
TableD--3--Lubricantquantityguidelinesforopengearingintermittentmethodsofapplication–
automatic,semi--automatic,handspray,gravityfeedorforceddripsystems(vt<7.5m/s)1)2)3)Geardiameterinmeters2.43.13.74.34.95.56.16.77.37.98.59.19.810.411.111.612.212.813.4Milliliteroflubricantrequiredperminuteofdriveoperation4)Facewidthinmillimeters2543564575596607628649650.440.540.640.740.840.941.041.140.540.640.740.840.941.041.141.240.640.740.840.941.041.141.241.340.740.840.941.041.141.241.341.440.840.941.041.141.241.341.441.540.941.041.141.241.341.441.541.641.041.141.241.341.441.541.641.741.141.241.341.441.541.641.741.841.241.341.441.541.641.741.841.941.341.441.541.641.741.841.942.041.441.541.641.741.841.942.042.141.541.641.741.841.942.042.142.241.641.741.841.942.042.142.242.341.741.841.942.042.142.242.342.441.841.942.042.142.242.342.442.541.942.042.142.242.342.442.542.642.042.142.242.342.442.542.642.742.142.242.342.442.542.642.742.842.242.342.442.542.642.742.842.94152
0.340.440.540.640.740.840.941.041.141.241.341.441.541.641.741.841.942.042.1410161.191.291.391.491.591.691.791.891.992.092.192.292.392.492.592.692.792.892.99NOTES:1)Wherethelubricantisappliedtothedrivengear,sprayingapplicationtimeshouldequal1,andpreferably2revolutionsofthedrivengear,i.e.,@16RPMofthedrivengear,lubricantapplicationtimeshouldbefrom3.75to7.5secondsindurationtoinsurecompletecoverage.
2)Wherethelubricantisappliedtothedrivinggear,sprayingapplicationtimeshouldequal4,andpreferably8revolu-tionsofthedrivinggear,i.e.,@50RPMofthedrivinggear,lubricantapplicationtimeshouldbefrom4.8to9.6secondsindurationtoinsurecompletecoverage.
3)Periodicvisualinspectionsoftheworkingpressureflanksofthedrivinganddrivengearsshouldbeperformedbyqual-ifiedpersonneltoensurethatsufficientlubricantisbeingapplied,aswellasthelubricationsystem/methodisprovidingproperprotection.
4)Themorefrequentapplicationofsmallquantitiesoflubricantispreferred.However,whereadiluentisusedtothinthelubricantforspraying,theintervalsbetweenapplicationsmustbesufficienttopermitcompletediluentevaporation.
26
AMERICANNATIONALSTANDARDANSI/AGMA9005--E02
AnnexE(informative)
Guidelineforconditionmonitoring
[Theforeword,footnotesandannexes,ifany,areprovidedforinformationalpurposesonlyandshouldnotbeconstruedasapartofANSI/AGMA9005--E02,IndustrialGearLubrication.]
Conditionmonitoringcanprovideveryusefulinfor-mationaboutthehealthoftheequipmentinservice.Itisnot,however,aonetimeanalysis.Tobeeffective,theequipmentmustbesampledonaregularbasisandrecordsmaintainedwhichwillallowtheusertoobservetrendsandspotadversechangesinthestateofthelubricant.Thesamplingratewillbedependentonthetypeofequipment,serviceusage,typeofoperation,andavailability.Inordertobeeffective,onemustalsopayattentiontosamplingtechniqueandprescribeanalysesthatarepertinenttotheoperationoftheequipment.Interpretationoftheresultsobtainedfromtheanalysesisalsocriticaltopreventprematurechange--outoftheoiloroversightsofimpendingproblemswiththesystem.Itishighlyrecommendedthatthelubricantsupplierbeconsultedwheninitiat-ingaconditionmonitoringprogram.
Generally,whenonereferstoconditionmonitoringitmeansthatonewilltakeasamplefromtheequipmentinserviceattheprescribedintervalandsendittoalaboratoryforanalysis.However,thereareanumberofquickspotchecksthatcanbeperformedon--sitebytheuser.Theseon--sitemethodsarenotmeanttobedefinitive,butrathertoprovidetheuserwithanothertooltohelpmaintaintheequipment.Thesespottestscanbeperformedasoftenasnecessaryandcansupplementthefindingsoftheanalyticalresultsfromthelaboratory.E.1Lubricantsampling
Theeffectivenessofalubricantanalysisprogram,whetheritison--siteorlaboratory,dependsonpropersamplingtechniques.Thefollowingguide-linesshouldbeemployedaspartofanyconditionmonitoringprogram.
Thesampleshouldberepresentativeofthebulkofthelubricantinoperation.Samplingfromstagnantpoolareasoftheequipmentmayproduceunreason-ablyhighlevelsofcontaminants,whilesamplingfromahighspeedstreammaygiveverylowreadingsofcontaminants.Anexamplemightbetakingtheinitialsampleofoilemergingfromthedrainorsamplingvalve.Thiswouldtypicallybea
deadzoneandlikelycollectinganundueamountofparticulateandweardebris.Itisbesttodiscardthefirstportionoftheeffluentandcaptureaportionoftheoilfromthesump.
Consistencyinsamplingisanothercriticalelementtoobtainaneffectivetrendanalysisfromthedata.Samplingshouldbedone,wheneverpossible,fromthesamelocationintheequipmentandatthesamepointinthedutycycle.Varyingeitherofthesecouldleadtosignificantvariationintheresultsobtained.Anexamplewouldbesamplingonetimewhentheunitishotandthenexttimewhenthatsameunithasbeenidleandreturnedtosomelowerambienttemperature.Therecouldbeasignificantvariationintheamountofwaterobserved.Insomecasesitisdesirabletoknowthis,butitshouldbenotedthatthesamplingtimeorconditionwasdifferentfromtheroutinesampling.
Cleanlinessisveryimportant.Theintentofthemonitoringprogramistofollowtheconditionoftheoilintheequipment.Therefore,itisimperativetopreventexternalcontaminantstoentertheoilduringthesamplingprocess.Sincemostoftheanalyticaltestsarelookingforelementsorcomponentsthatareontheorderof10’sor100’spartspermillion(ppm),usingdirtyequipmenttosampleorstoretheoilcoulddefeatthisobjectiveveryeasily.Therefore,itisrecommendedthatsamplingequipmentshouldbekeptcleanand,wherepossible,dedicatedtoaparticularpieceorseriesofequipment,andthatclear,plasticsamplebottlesbeusedtostoreandshiptheoiltothelaboratory.Anothercleanlinessissuetohelptheconditionmonitoringprogramistoensurethattheareaaroundthesamplingportiscleanbeforeopeningthevalveorportforsampling.Thiswillpreventingressofanyunwanteddebrisorothercontaminanttothesystem.
Lastly,itisimportanttodocumentthesamplebeingtakenfromtheequipment.Asaminimum,thesamplershouldidentifytheunitfromwhichthesamplewastaken,thedate,numberofhoursofoperation(ifavailable),andanyadditionalinforma-tionthatmaybeusefultotheinterpretationofthe
27
ANSI/AGMA9005--E02resultslateron,i.e.,unitidleforlongperiod,noisyoperation,etc.E.2On--siteanalysis
Aspartoftheconditionmonitoringprogram,afewsimple,on--sitetestscanbeperformedtosupple-mentthelaboratoryanalyses.Thesesimpletestsallowtheusertocheckforundueoxidationorcontaminationoftheoilasoftenasnecessary.Sincetheseareverysubjectivemethods,anycompari-sonsarebestdonetoasampleofthenewoilatthetimeofthecomparison.E.3Appearancetest
Thismethodisusefultoidentifypotentialproblemswithgrosscontaminationoroxidation.Placeasampleofthelubricantinaclean,glassbottle(tall,narrowbottleisbest).Comparethesamplefromtheequipmenttoanewoilsampleinthesametypecontainer.Theoilshouldappearclearandbright.Ahazy,cloudy,ormilkyappearancesuggeststhepresenceofwater;ifso,runthe“crackle”test.Adarkenedcolormayindicateoxidationorcontamina-tionwithveryfinewearparticles.Tiltingthebottles(newandusedoilsamples)simultaneouslywillgiveanindicationofchangesinviscositywhichcouldberelatedtooxidationorshearlosses.Lookforsedimentinthebottomofthesamplebottle;ifpresent,runthesedimentationtest.E.4Odortest
Carefullysnifftheoilsampleandcompareittothesampleofnewoil.Oilsthathaveoxidizednoticeablywillhaveaburntodororsmellacrid,sourorpungent.E.5Sedimentationtest
Ifsedimentisnotedduringtheappearancetest,thefollowingtestshouldbeperformedtosupplementorconfirmthis.Placeasampleoftheoilinaclean,whiteplasticcupandallowittostandcoveredfortwodays.Thecupshouldbecoveredorstoredinaclean,dustfreeareatopreventexternalcontami-nantsfromtheenvironmentinfluencingthistest.Carefullypouroffallbutafewmillilitersoftheoil.Ifanyparticlesarevisibleatthebottomofthecup,contaminantsarepresent.Iftheparticlesrespondtoamagnetunderthecupthenthesecontainferrousdebris.Ifthereisnoresponsefromthemagnetand
28
AMERICANNATIONALSTANDARD
thesolidsfeelgrittytheyarelikelysand,dirtornon--ferrousdebris.E.6Crackletest
Ifthepresenceofwaterissuspectedfromtheappearancetest,thefollowingsimpletestcanbeusedtoconfirmit.Placeasmalldropoftheoilinquestionontoahotplatethathasbeenwarmedto135°C.Ifthesamplebubbles,itispossiblewaterispresentinexcessof0.05%(500ppm).Ifthesamplebubblesandcrackles,thewaterlevelcouldbeinexcessof0.1%(1000ppm).Thisshouldbeconfirmedwiththelaboratoryanalysis.E.7Laboratoryanalysis
Therearemanyanalyticalmethodsavailabletodaythatcanbeusedtoprovideinformationabouttheconditionofthelubricant.Inallcases,comparisonsshouldbemadetoasampleofthenewoilthatwasactuallyusedintheequipment.Thebaselineanalysesshouldnotcomefromabrochure,butratherfromanalysisoftheactualsample,tobesurethatthestartingmaterialwaswithinthespecifiedlimitsstatedbythesupplier.Thebasicanalysesusedasastartingpointshouldinclude:PropertyTestMethodViscosity...................ASTMD445Watercontent...............ASTMD6304Acidnumber................ASTMD664[15]Additiveandwearelements...
ASTMD5185[16]
Supplementalanalysescanalwaysbeconductedforspecialapplicationsoriftherearequestionsraisedfromthebasicanalyseslistedabove.Someoftheseadditionaltestsmightinclude:--ferrographicanalysis;
--chemicaltestsforspecificelements,i.e.,sul-fur,nitrogen,etc.;--particulatematterandsizedistribution.
Asanoteofcaution,oneshouldrefrainfrommakinggeneralizationsorputtingundoemphasisontheseanalyses.Theyshouldbeviewedasavaluablepieceofinformationwhich,whenusedandinter-pretedproperlyfortheequipmentinquestion,canprovidetheuserwithausefulaidtoassessthestateofthatequipment.
Forfurtherinformation,seeAGMA921--A97[17].
AMERICANNATIONALSTANDARDANSI/AGMA9005--E02
AnnexF(informative)
Lubricationsystemmaintenance
[Theforeword,footnotesandannexes,ifany,areprovidedforinformationalpurposesonlyandshouldnotbeconstruedasapartofANSI/AGMA9005--E02,IndustrialGearLubrication.]
F.1Initiallubricantchangeperiod
Theinitialstart--upandoperatingoilofanewgeardriveshouldbethoroughlydrainedafteraperiodof500operatinghoursorfourweeks,whicheveroccursfirst.Theimportanceofathoroughgearcasecleaningwithflushingoiltoremoveparticlematterduringthefirstlubricantchangecannotbeoveremphasized.Consultthemanufacturerifthisisintendedtobeafill--for--lifeapplication.F.2SubsequentlubricantchangeintervalUndernormaloperatingconditions,thelubricantsshouldbechangedevery2500operatinghoursorsixmonths,whicheveroccursfirst.Extendingthechangeperiodmaybeacceptablebasedonthetypeoflubricant,amountoflubricant,systemdowntime,orenvironmentalconsiderationoftheusedlubricant.Thiscanbedonebyproperimplementationofacomprehensivemonitoringprogram.Suchapro-grammayincludeexaminingfor:--changeinappearanceandodor;--lubricantviscosity;
--lubricantoxidation,e.g.,totalacidnumber;--waterconcentration;--contaminantsconcentration;--percentagesedimentandsludge;--additivedepletion.
Newlubricantspecificationshouldbeusedtoestablishabaselineforcomparison.Followunitmanufacturerandlubricantsupplier’srecommenda-tionsforappropriatesubsequenttestingintervals.F.3Cleaningandflushing
Whenthegeardrivereachesnormaloperatingtemperature,lubricantshouldbedrainedimmediatelyaftershutdown.Thedriveshouldbecleanedwithaflushingoil.Flushingoilmustbecleanandcompatiblewiththeoperatingoil.Oilsspeciallyblendedforflushing,orcleanoperatingoilarecommonlyusedforflushing.
F.3.1Cleaningwithsolvents
Theuseofasolventshouldbeavoidedunlessthegeardrivecontainsdepositsofoxidizedorcontaminatedlubricantwhichcannotberemovedwithaflushingoil.Whenpersistentdepositsnecessitatetheuseofasolvent,aflushingoilshouldthenbeusedtoremovealltracesofsolventfromthesystem.
CAUTION:Whensolventsareused,consulttheunitmanufacturertoassurecompatibilitywithpaint,seals,sealantandothercomponents.
F.3.2Usedlubricants
Usedlubricantandflushingoilsshouldbecompletelyremovedfromthesystemtoavoidcontaminatingthenewcharge,andproperlydisposed.
CAUTION:Caremustbeexercisednottomixlubricantswithdifferentadditivechemistry.
F.3.3Inspection
Theinteriorsurfacesofthegeardriveshouldbeinspected,wherepossible,andalltracesofforeignmaterialremoved.Thenewchargeoflubricantshouldbeaddedandcirculatedtocoatallinternalparts.
F.4Protectivecoatings
Forgearingwhichmaybesubjectedtoextendedshipmentorstorageperiods,considerationshouldbegiventoapplyingaprotectivecoatingformulatedtopreventrusting.Thesecoatingsmustbecompatiblewiththelubricanttobeusedinserviceandallothercomponents.
CAUTION:Somelubricantsmayfoamduetoreactionwithrustpreventatives.Ifnecessary,flushoutresiduesfromtheunit.
F.5Filtration
Geardriveswithpressurizedoilsystemsshouldhaveafilteronthepressuresideofthesystemtoremovecontaminationparticles.Asaguideline,intheabsenceofspecificmanufacturer’srecommen-dations,thefiltershouldbenocoarserthan50µm(microns)absoluteforgeardriveswithballorrollerbearings,and25mmabsoluteforgeardriveswith
29
ANSI/AGMA9005--E02AMERICANNATIONALSTANDARD
journalbearings.Inaddition,ascreenmaybeusedonthesuctionsidetoprotectthepump.Thisshouldbeincombinationwithafilterandmusthaveacoarsemeshtoavoidflowrestriction.
CAUTION:Lubricantsshouldnotbefilteredthroughfuller’searthorothertypesoffilterswhichcouldremovetheadditivesoftheoriginalformulation.
F.6Geartoothwear
Therearenumerousmodesofdamageassociatedwithgearteeth.SeeANSI/AGMA1010--E95.Properselection,application,andmaintenanceoflubricantsisthereforeessentialtoavoidingprematurewear.Ifprematurewearoccurs,lubricantselectionshouldbereviewed.
30
AMERICANNATIONALSTANDARDANSI/AGMA9005--E02
Bibliography
ThefollowingdocumentsareeitherreferencedinthetextofANSI/AGMA9005--E02,IndustrialGearLubrication,orindicatedforadditionalinformation.
1.ANSI/AGMA2101--C95,FundamentalRatingFactorsandCalculationMethodsforInvoluteSpurandHelicalGearTeeth
2.AGMA925--A02,EffectofLubricationonGearSurfaceDistress
3.ISO4406:1999,Hydraulicfluidpower--Fluids--Methodforcodingthelevelofcontaminationbysolid
particles
4.ASTMD5662--99,StandardTestMethodforDeterminingAutomotiveGearOilCompatibilitywithTypicalOilSealElastomers
5.ISO13357--1:2000,Petroleumproducts–Determinationofthefilterabilityoflubricatingoils–Part1:Procedureforoilscontainingwater
6.ISO13357--2:1998,Petroleumproducts–Determinationofthefilterabilityoflubricatingoils--Part2:
Procedurefordryoils
7.ASTMD5763--95,TestMethodforOxidationandThermalStabilityCharacteristicsofGearOilsUsingUniversalGlassware
8.ASTMD4871--00,GuideforUniversalOxidation/ThermalStabilityTestApparatus
9.ASTMD5579--00,TestMethodforEvaluatingtheThermalStabilityofManualTransmissionLubricantsinaCyclicDurabilityTest
10.ISO3016:1994(ASTMD97--96a),Petroleumproducts--Determinationofpourpoint11.SAEJ306,AutomotiveGearLubricantViscosityClassification
12.Osborne,R.E.,“NewTrendsinGearLubricantViscosity”,NLGISpokesman,September,1977,pp.187--191
13.Hitchcox,H.F.andPowell,D.L.,“ASTMStudyofFluidityofAutomotiveGearOilsatLowTemperatures”,SAEPaper780939
14.ANSI/AGMA1010--E95,AppearanceofGearTeeth--TerminologyofWearandFailure
15.ASTMD664--95(2001)e1,TestMethodforAcidNumberofPetroleumProductsbyPotentiometricTitration16.ASTMD5185--97,TestMethodforDeterminationofAdditiveElements,WearMetals,andContaminantsinUsedLubricatingOilsandDeterminationofSelectedElementsinBaseOilsbyInductivelyCoupledPlasmaAtomicEmissionSpectrometry(ICP--AES)17.AGMA/AWEA921--A97,RecommendedPracticesforDesignandSpecificationofGearboxesforWindTurbineGeneratorSystems
18.ISO2719:1988(ASTMD93--97),Petroleumproductsandlubricants--Determinationofflashpoint--Pensky--Martensclosedcupmethod19.ISO9120:1997,Petroleumandrelatedproducts--Determinationofair--releasepropertiesofsteam
turbineandotheroils--Impingermethod
31
PUBLISHEDBY
AMERICANGEARMANUFACTURERSASSOCIATION1500KINGSTREET,ALEXANDRIA,VIRGINIA22314
因篇幅问题不能全部显示,请点此查看更多更全内容