AsymmetricCatalysisandAmplificationwithChiralLanthanideComplexes
JunjiInanaga,*HiroshiFuruno,andTetsujiHayano
InstituteforFundamentalResearchofOrganicChemistry,KyushuUniversity,Hakozaki,Fukuoka812-8581,Japan
ReceivedNovember9,2001
Contents
I.Introduction
II.ChiralComplexesandLigands
III.AsymmetricCatalysisandNonlinearEffects
A.Hetero-Diels−AlderReactionB.Diels−AlderReactionC.1,3-DipolarCycloadditionD.EneReaction
E.Aldol-TypeReaction
F.Hydrophosphonylationand
HydrophosphinationofAldehydesandIminesG.SilylationofAldehydes
H.ReductionofCarbonylGroupsI.Michael-TypeReaction
J.EpoxidationofConjugatedEnones
K.Ring-OpeningReactionofMesoEpoxidesL.Hydrogenation,Hydroamination,andHydrosilylationofOlefinsM.MiscellaneousIV.Conclusions
V.AcknowledgmentsVI.References
2211221122122212221622162217221722182218221822192220222222222223222322232223
I.Introduction
Theimportanceoflanthanidereagentsandcata-lystsinorganicsynthesishasbeenwell-recognizedsincethepioneeringworksbyKaganandco-workersontheSmI2-promotedreactions1andbyLucheandco-workersonthechemo-andstereoselectivereduc-tionofcarbonylcompoundswiththeCeCl3/NaBH4system.2Nonlineareffects(NLEs)inasymmetriccatalysis,oneofthemostimportantconceptualfindingsinasymmetricsynthesis,alsooriginatedintheworkofKaganandco-workers.3ThankstoKaganandotherresearchers,mechanistic,theoretical,andexperimentalstudiesonNLEshaveadvanced.4Thepositivenonlineareffect((+)-NLE),whichisalsocalled“asymmetricamplification”,5istheconvexdeviationfromtheusuallyassumedlinearrelation-shipbetweentheenantiopurityofthechiralligandandthatoftheproduct.Ontheotherhand,theconcavedeviationiscalledthenegativenonlineareffector(-)-NLE(Figure1).Suchphenomena(NLEs)havefrequentlybeenobservedinvariouscatalyticasymmetricreactions,especiallyusingchiralmetalcomplexes.6
ThenonlinearitiesshowninFigure1mayinprinciplearisebyautoassociationorassociation
aroundamatrixoftheinitialchiralspecies,whichproducediastereomericperturbations.MathematicaltreatmentsaswellasmechanisticstudiessuggestthattheNLEsobservedinsomecatalyticasymmetricreactionscomefromthediastereomericassociationsofchiralligandsinthecatalyticcycles.4Fromapracticalpointofview,suchreactionsinwhichasymmetricamplificationcanoperatearehighlyfavoredbecausetheymayprovideopticallyactiveproductswithhighenantiomericexcesses(ee’s)usingachiralligandthatisnotenantiomericallypure.Theuseofchirallanthanidecomplexesasnewcatalystsinasymmetricsynthesisiscurrentlyofintenseinterest.Lanthanideshavepartiallyfilled4forbitalsandalmostempty5dorbitals;inaddition,the4felectronsdonothaveasignificantradialextensionbeyondthefilled5s25p2orbitals.Therefore,theyaregenerallyquiteelectropositive.Inaddition,becauseoftheirlargeionicradii,ingeneraltheyexhibithighcoordinationnumberssuchas7,8,or9tothemaximum12.Thesepropertiesarehighlyadvantageousforassemblingvariouschiralandachiralligandsaroundthemetalions,thuscreatinganintegratedchiralspaceinwhichthestereochem-istryofthereactionmayeffectivelybecontrolled;theyalsomakeNLEslikelytooccurbecausetheyhaveahighcapacityforligandexchangeandag-gregation.
Thispaperbrieflyreviewsrecentprogress(uptomid-2001)intheasymmetricreactionscatalyzedbychirallanthanidecomplexes(scandium,yttrium,andlanthanumwillbeincludedaslanthanidesinthispaperforbrevity)sincesomeimportanttopicscon-cerningasymmetriccatalysiswithchirallanthanidemetallocenes,7lanthanidetriflates-basedchiralcom-plexes,8andchiralheterobimetalliclanthanidecom-plexes9aswellassomediscussionbasedonthecoordinationchemistry10willbemorepreciselycov-eredinothercontributionstothisissue,andspecialattentionisfocuseduponthenonlineareffects(es-peciallyasymmetricamplification)observedinthesereactions.
II.ChiralComplexesandLigands
InFigures2and3aresummarizedtheisolatedchirallanthanidecomplexeswhichhavebeenef-ficientlyusedascatalystsandthechiralligandsemployedfortheinsituformationofthelanthanidecomplexes,whichalsoworkedaseffectivecatalysts,respectively.
10.1021/cr010444tCCC:$39.75©2002AmericanChemicalSociety
PublishedonWeb05/17/2002
2212ChemicalReviews,2002,Vol.102,No.6JunjiInanaga,borninFukuokain1948,receivedhisPh.D.degree(ProfessorMasaruYamaguchi)fromKyushuUniversityin1975andthenwasappointedResearchAssociatethere,wherehehadbeenengagedinthesyntheticstudyofmacrolides.Beginningin1981hespenttwopostdoctoralyearsatIndianaUniversity(ProfessorPaulA.Grieco).Hestartedhissamariumchemistryin1985andwaspromotedtoAssociateProfessorin1989atKyushuUniversity.InthesameyearhemovedtotheInstituteforMolecularScienceatOkazakiandthenmovedbacktoKyushuUniversityin1993asastartingIFOCmember,wherehewaspromotedtoProfessorin2000.HeheldaVisitingProfessorshipatUniversiteParis-Sudin1994andatKyotoUniversityin1996.In1987hewasawardedtheLectureshipforYoungChemists,ChemicalSocietyofJapan,andin1988theProgressAwardinSyntheticOrganicChemistry,Japan.Hewasarecipientofthe1999ShiokawaAward,theRareEarthSocietyofJapan.Hiscurrentresearchinterestsincludenewsyntheticmethodsusinglanthanides,chiralrecognition,andasymmetriccatalysis.
HiroshiFurunowasborninNagasaki,Japan,in1971.HereceivedhisPh.D.degreein2000fromKyushuUniversityunderthesupervisionofProfessorJunjiInanaga.AfterspendingayearasaPostdoctoralFellowatKyotoInstituteofTechnology,hewasappointedResearchAssociateatIFOCin2001.Hisresearchinterestcentersonthedevelopmentofcatalyticasymmetricsynthesisusingchiralrare-earthmetalcomplexes.
III.AsymmetricCatalysisandNonlinearEffectsA.Hetero-Diels−AlderReaction
In1983,Danishefskyandco-workerspublishedamemorablepaperreportingachiraleuropiumcom-plex-catalyzedhetero-Diels-Alderreactionofben-zaldehydewiththeso-calledDanishefsky’sdieneasthefirstexampleofachirallanthanidecomplex-catalyzedreaction(Scheme1).11Thecatalyst(1),popularlyusedasaNMRshiftreagent,wasfoundtobeeffectiveforthereactionshowingconsiderable
Inanagaetal.
TetsujiHayanowasbornin1976inFukuoka,Japan.HegraduatedfromFukuokaUniversity,FacultyofScience,in1999andreceivedhisM.S.degreefromKyushuUniversityin2001underthedirectionofProfessorJunjiInanaga.InthesameyearhestartedhisPh.D.studyundertheguidanceofProfessorInanagaonthedevelopmentofnovelchirallanthanidecomplexesthatcanworkasreusableheterogeneouscatalystsinasymmetricsynthesis.
Figure1.
enantioselectivity(58%ee).Schuringandco-workerspreparedapolysiloxane-fixedeuropiumcomplex(3)asareusablepolymericcatalyst,whichshowedcomparableactivitytotheunsupportedcatalyst(1).12Theeuropiumcomplex(1)wasemployedalsofortheasymmetrichetero-Diels-AlderreactionofR-oxoesterswith1-methoxybutadiene,affordingreasonableenantioselectivities.13
Scheme1
Mikamietal.pointedoutthattheuseofalan-thanidetriflate/chiralligand/basesystemcouldef-fectivelypromotethereactionofbutylglyoxylatewithDanishefsky’sdieneinthepresenceofwatertogivethecycloadductwithupto66%ee(Scheme2).14Interestingly,theenantioselectivityishighlydepend-
AsymmetricCatalysisandAmplificationwithChiralLanthanideComplexes
Figure2.Isolatedchirallanthanidecomplexes.
entontheamountofwateradded.QianandWangreportedthatthesametransformationcouldbebestperformedbythecatalysiswithamixtureofYb(OTf)3andachiral2,6-bis[4′-isopropyloxazol-2-yl]pyridine(i-Pr-pybox)(31)inether-dichloromethanemixed-solventat-78°C,affordingupto77%eeoftheadduct.15
ChemicalReviews,2002,Vol.102,No.62213
Scheme2
In1995,wepreparedthe1:3complexesofaseriesoftrivalentlanthanideionswithachiralbinaphthylphosphateligand,Ln[(R)-BNP]3(4),anddemon-stratedthatsomeofthemeffectivelycatalyzedthehetero-Diels-Alderreactionatroomtemperature,affordingtheproductswithgoodee’s(upto70%ee).16Itwasalsoshownthattheadditionofanequimolaramountof2,6-lutidinetotheytterbiumcatalystYb-4furtherpromotedthereactionunderhomogeneousconditions,suggestingdeoligomerizationofthecom-plex,thusaffordingthecycloadditionproductswithenhancedenantioselectivities(upto93%ee)(Scheme3).17Theasymmetricinductionwashighlydepen-Scheme3
dentonthelanthanideionsused,eitherinthepresenceorabsenceof2,6-lutidine;theytterbiumcatalystaffordedthehighestenantioselectivityasshowninFigure4.16,18Onlyca.0.07Ådifference(fromGdtoYb)19broughtaboutalmostan85%eedifference.Carefulanalysisoftheytterbium-cata-lyzedreactionshowedthattheenantioselectivitydoesnotchangethroughoutthereaction,suggestingthethermodynamicstabilityoftheactivecatalyst(Figure4).
Inthisreactionaremarkablyhighasymmetricamplificationwasrealizedasthefirstexampleinthemetal/ligand)1:3system(Figure5).20CatalystspreparedeitherbymixingYb[(R)-BNP]3andYb[(S)-BNP]3(Yb-catalystA)orfromenantiomericallyim-pureNa-BNPandYbCl3(Yb-catalystB)gavesimi-larresults.
Onthebasisofsomeexperimentalresults,Furunoetal.explainedthisphenomenonintermsoftheautogeneticformationoftheenantiopurehomochiralytterbiumcomplex.FortheformationofYbL3,therearefourpossibilitiesinchoosingthreechiralligandsoutoffour:(LR)3,(LR)2LS,LR(LS)2,and(LS)3.Fromthesefourcomplexes,theheterochiralpairssuchasYb(LR)3andYb(LS)3and/orYb[(LR)2LS]andYb[LR-(LS)2]seemtoirreversiblyassembleformingthermo-dynamicallyverystablecomplexesthathavealmostnocatalyticactivityforthehetero-Diels-Alderreac-
2214ChemicalReviews,2002,Vol.102,No.6Figure3.Chiralligandsforlanthanidecomplexes.
Figure4.
Inanagaetal.
tion.Asaresult,theenantiopureYbcomplexbasedonanexcessamountoftheenantiomer,Yb(LR)3,wouldremaininsolutionastherealcatalyst(Figure6).Thisphenomenonturnedouttobequitegeneralwithinthelanthanide-metalionswithsimilarionicradiisuchasthatoftheytterbiumion.20
Hayanoetal.foundthattheCH2Cl2-solublechiralceriumcomplex(C)preparedfromcericammoniumnitrate(CAN)andNa-(R)-BNPalsoaffordshighasymmetricamplification(Figure7).21Spectral(ESCA,ICP-MS)dataofthecatalystindicatedittobethecerium(III)complex.Differentfromthecaseoftheytterbiumcatalyst,theoligomericandCH2Cl2-insolubleceriumcomplex(D)alsocatalyzedthereaction.Interestingly,alinearrelationshipwasobservedinthiscaseandtheobservedee’softheproductwerelinearlyhigherthanthoseofthecor-respondingligandsofthecatalysts(Table1).21
Recently,Kambaraetal.accomplishedalmostperfectenantioselectivity(99%ee)intheY[(R)-H8-BNP]3(5)catalyzedreactionwithoutusing2,6-lutidineasanadditive.22
AsymmetricCatalysisandAmplificationwithChiralLanthanideComplexesFigure5.
Figure6.
Table1.
eeof(R)-18,%
entryeeofcatalyst(CorD),%
forC
forD11052201034018
4509656098226
80
99
27
IshitaniandKobayashisucceededinthefirstcatalyticasymmetricaza-Diels-Alderreactionof2-hydroxyaniline-derivedaldimineswithelectron-richolefinsbyusingachiralytterbiumcomplexpre-paredinsitufromYb(OTf)3,(R)-BINOL(18),DBU,
ChemicalReviews,2002,Vol.102,No.62215
Figure7.
and2,6-di-tert-butyl-4-methylpyridine(DTBMP)inthepresenceofmolecularsieves4Aat0°C.23Thereactionswerecarriedoutat-15°Cinthepresenceofadditivestogivethe8-hydroxyquinolinederiva-tiveswithhighee’s(upto91%ee).Whitingandco-workersalsodemonstratedthatachiralytterbiumcomplexpreparedfromYb(OTf)3,(1R,2R)-diphenyl-ethylenediamine(26),and2,6-lutidinenicelypro-motedthereactionofthep-anisidine-derivedimineofmethylglyoxalatewithDanishefsky’sdieneafford-ing,afteracidicworkup,a2,3-dehydro-4-piperidonederivativewith87%ee.24(Scheme4)
Scheme4
2216ChemicalReviews,2002,Vol.102,No.6B.Diels−AlderReaction
Kobayashiandco-workersrealizedahighlyenan-tioselectiveDiels-Alderreactionbycatalysiswithin-situ-preparedchirallanthanidecomplexes.25Eitherenantiomercanbeselectivelysynthesizedbymodify-ingLn(OTf)3withasinglechiralsourceandachoiceofachiralligands.Forexample,thereactionof3-(2-butenoyl)-1,3-oxazolidin-2-onewithcyclopentadienepreferablygavetheendo-adduct(endo/exo)89:11)witha(2S,3R)configurationin93%eewhenacatalystpreparedinsitufromYb(OTf)3,(R)-BINOL(18),cis-1,2,6-trimethylpiperidine(TMP),and3-acetyl-1,3-oxazolidin-2-one(40)wasused.Ontheotherhand,the(2R,3S)enantiomerwasselectivelyob-tainedin81%eeusingadifferentcatalystpreparedfromYb(OTf)3,(R)-BINOL,1,2,2,6,6-pentamethylpi-peridine(41),and3-phenylacetylacetone(PAA)(Scheme5).Thereversaloftheenantiofacialselection
Scheme5
isaccountedforbythechangeinthecoordinationnumbers.Thecoordinationstructureofthecatalystisaffectedbytheligandsemployed;morethantwodifferentcomplexesseemtobeinvolvedinthereac-tionaseffectivecatalysts.Thiscomplexitywasfurtherascertainedbytheobserveddiversityoftherelationshipbetweentheenantiopurityofthechiralligandandthatoftheproductdependingontheachiralligandsaswellasmetalionsofthecatalystsused.Forexample,a(-)-NLEwasobservedinthecatalysiswiththechiralytterbiumcomplex(E)preparedinsitufromYb(OTf)3,(R)-BINOL,TMP,andPAA,whereastheytterbiumcatalyst(F)affordedanalmostlinearrelationship,andthescandiumcatalyst(G)preparedfromSc(OTf)3,(R)-BINOL,andTMPshoweda(+)-NLE(Figure8).25a,c
Nakagawaandco-workersusedanin-situ-pre-paredchiralcomplexcomposedofYb(OTf)3,2,2′-bis-(acylamino)-1,1′-binaphthyl(28),andN,N-diisopropyl-ethylamine(DIPEA)(1:1.2:2.4)forsimilarreactions
Inanagaetal.
Figure8.
andachievedexcellentenantioselectivities(upto>98%ee).26Fukuzawaetal.alsoexaminedthecombineduseofSc(OTf)3andi-Pr-pybox(31)undervariousconditionsandobtainedtheDiels-Alderadductswithfairlyhighenantioselectivities(upto90%ee).27Aoyamaandco-workerspreparedalan-thanum-involvedhelicalcoordinationpolymer(12)fromLa(O-i-Pr)3,(R)-BINOL,andanthracene-bis-resorcinolanddemonstratedthatitcatalyzestheDiels-Alderreactionwithmoderateenantioselectiv-ity(70%ee).28Shibasaki’slithium-containinghetero-bimetalliccomplex(R)-La-6wasfoundtoactasaneffectiveLewisacidcatalystfortheDiels-Alderreaction,thusaffordingtheproductwithupto86%ee.29
Marko´andco-workersreportedthatthechiralcatalystcomposedofYb(OTf)3,(R)-BINOL(18),andDIPEAfortheinverseelectron-demandDiels-Alderreactionsof2-pyronederivativesgaveadductsinupto95%ee(Scheme6).30Theyalsostatedthatanega-tivenonlineareffectwasobservedinthisreaction.
Scheme6
C.1,3-DipolarCycloaddition
In1997,Kobayashi’s31andJørgensen’s32groupsindependentlyfoundthatthecomplexespreparedfromYb(OTf)3andchiralligands[(R)-BINOL(18)+amineori-Pr-pybox(31),respectively]inducedenan-tioselectivityinthe1,3-dipolarcycloadditionofni-trones(42)withactivatedolefinssuchasR,-unsaturatedalkenoyloxazolidones.Thecorresponding
AsymmetricCatalysisandAmplificationwithChiralLanthanideComplexesisoxazolidinederivativeswereobtainedingoodee’s(upto78%ee).Kobayashiandco-workerssucceededinimprovingtheenantioselectivity(upto96%ee)aswellasdiastereoselectivity(endo/exo)99:1)byusinganadditionalchiralaminebase,N-methyl-bis[(R)-1-naphthylethyl]amine[(R)-MNEA].33Interestingly,thesenseofenantioselectivityisswitchablesimplybychangingtheadditivefrommolecularsieves4A(MS4A)toaNitron.Ohtaandco-workersproposedanewcomplexbetweenSc(OTf)3andachiral3,3′-bis(2-oxazolyl)-BINOL(24)asaneffectivecatalystforthesamereaction34(Scheme7).
Scheme7
D.EneReaction
Qianandco-workersusedtwotypesofchiralytterbiumcomplexesascatalystsoftheasymmetricglyoxylate-enereaction.OnecatalystisamixtureofYb(OTf)3anda6,6′-disubstituted(R)-BINOLde-rivative(19),35andtheotherisacomplexofYb(OTf)3withPh-pybox(33).36Moderateenantioselectivitieswereobservedinbothcases(Scheme8).
Scheme8
E.Aldol-TypeReaction
Greatsuccessinasymmetricaldol37,38(upto94%ee)andnitroaldolreactions37,39-42(upto98%ee)owes
ChemicalReviews,2002,Vol.102,No.62217
mainlytoShibasaki’soutstandingworkusingthechiralheterobimetalliclanthanidecomplexes,lan-thanide-alkali-metal-(R)-BINOL(LnMB),ascata-lysts.ThedetailswillbedisclosedbyShibasakietal.inthisissue.9AsymmetricamplificationwasreportedforthereactionofnitromethanewithR-naph-thoxyacetaldehydecatalyzedbythechiralcomplexbetweenLaCl3‚7H2O,dilithium(S)-binaphthoxide,andNaOH;thenitroaldolproductwith68%eewasobtainedusing56%eeofthechiralligand(Scheme9).39a
Scheme9
Thecatalyticasymmetricnitro-Mannich-typereac-tionwasbesteffectedbyanotherkindoflanthanideheterobimetalliccomplexcomposedofYb(O-i-Pr)3,KO-t-Bu,and(R)-BINOL(1:1:3)togivethedesiredproductwithupto91%ee(Scheme10).43
Scheme10
Thefirstcatalyticenantioselectivealdol-Tish-chenkoreactionbetweenaromaticaldehydesand2-methylpropanal(6equiv)wasrealizedbyMorkenandco-workersusingtheyttriumcomplexpreparedfromY5O(O-i-Pr)13andachiralsalenligand(36)togivethecorresponding-acyloxyalcoholswithupto74%ee(Scheme11).44
Scheme11
FortheMukaiyamaaldolreaction,useoflan-thanidetriflatesincombinationwithchiralligands
2218ChemicalReviews,2002,Vol.102,No.6wasfoundtobeeffective,producingupto82%ee(Scheme12).45,46
Scheme12
F.HydrophosphinationHydrophosphonylationofAldehydesand
andImines
Shibasaki-typechiralheterobimetalliclanthanidecomplexeswerefoundtobequiteeffectivealsofortheenantioselectivehydrophosphonylationandphos-phinationofaldehydesandimines.Thus,thecorre-spondingR-hydroxyphosphonatesandR-aminophos-phonates,whicharebiologicallyorpharmaceuticallyimportantcompounds,wereobtainedinhighenan-tioselectivities.Shibuyaetal.47andSpillingetal.48independentlyreportedthechirallanthanumcom-plex(composedof18‚Li2,NaO-t-Bu,andH2O)cata-lyzedreactionofaldehydesforwhichShibuyapointedoutasignificanteffectoftheelectron-donatingpara-substituentsofbenzaldehydeontheenantioselectiv-ity.49Thus,thehighestenantioselectivity(95%ee)wasattainedbyShibasakietal.inthereactionofp-dimethylaminobenzaldehyde.50Qianetal.alsoexaminedtheinfluenceofthesubstituentsatthe3,3′-and6,6′-positionsofBINOLasaconstituentofthechirallanthanidecomplex.51(Scheme13)
Scheme13
TheresearchchemistsoftheShibasaki’sandMartens’groupsactivelyinvestigatedtheenantiose-lectivehydrophosphonylation52,53andphosphination54ofacyclicandcycliciminesandfoundthatLnK3[(R)-BINOL]3(Ln-9)complexissuperiortothecorre-spondinglithium(Ln-7)orsodium(Ln-8)complexes
Inanagaetal.
asacatalyst.Thus,almostperfectenantioselectivitywasattainedinthereactionof2,2,5,5-tetramethyl-3-thiazolineusingLn-9asacatalyst(Schemes14and15.
Scheme14
Scheme15
G.SilylationofAldehydes
In1996,AbikoandWangreportedthefirstchiralyttriumcomplex-catalyzedasymmetricsilylcyanationofaldehydesthatrequiresonly0.2mol%ofthecatalystpreparedinsitufromY5O(O-i-Pr)13andaferrocene-derivedC2-chiral1,3-diketoneligand(38).55Aromaticaldehydeswereconvertedtothecorre-spondingcyanohydrinswithhighenantioselectivities(upto91%ee).Asaneffectivecatalystsystemforthesametransformation,Fangetal.proposedacombinationofSmCl3andachiralbis-phosphor-amidateligand(39)56andAspinallandGreevesetal.successfullyusedLnCl3incombinationwithPh-pybox(33).57Qianetal.reportedthatanin-situ-preparedcomplexfromLa(O-t-Bu)3andachiralBINOLderivative(21)ina2:3ratiowasalsoeffec-tive.58(Scheme16)
Scheme16
H.ReductionofCarbonylGroups
Thechirallanthanidecomplex-catalyzedenantio-selectivereductionofcarbonylcompoundshasbeenexaminedinthefollowingthreereactions:thereduc-tionwithNADHmodels(Scheme17),59theMeer-wein-Ponndorf-Verleyreduction(Scheme18),60-62andtheboranereduction(Scheme19).63ParticularlynoteworthyintermsofenantioselectivityistheworkofEvansetal.;asamariumcomplexpreparedinsitufromSmI3and(R)-styreneoxide-derivedC2-chiralaminodiol(30)catalyzedtheMeerwein-Ponndorf-Verleyreductionofarylmethylketonesinhigh
AsymmetricCatalysisandAmplificationwithChiralLanthanideComplexesScheme17
Scheme18
Scheme19
enantioselectivities(upto97%ee)(Scheme18).60Asignificanteffectofthelanthanide-metalsizeontheenantioselectivitywasobserved.Thus,thecomplexesofyttrium,terbium,samarium,andneodymiumshowedhigherselectivitiesthanthoseofscandium,lutetium,andlanthanum.Asymmetricamplificationwasalsoobserved:When80%eeofthechiralligandwasused,thereductionproductwasformedin95%ee,whichisthesameselectivityobtainedusingtheenantiopureligand.
I.Michael-TypeReaction
In1993,Scettriandco-workersappliedashiftreagent,(+)-Eu(tfc)3(2),asacatalysttotheMichaeladditionof1,3-dicarbonylcompoundstomethylvinylketoneobservingmodestenantioselectivities(Scheme20).64
Scheme20
ChemicalReviews,2002,Vol.102,No.62219
IntensivestudiesbyShibasakiandco-workersproducedexcellentresults.Thus,veryhighenantio-selectivities(upto99%ee)wererealizedintheMichaelreactionofvarious1,3-dicarbonylcompoundswithR,-unsaturatedcarbonylcompoundsbyusingLa(O-i-Pr)66,673/(S)-BINOL,65LaNa3[(R)-BINOL]3(La-8),orLa-linked-bisBINOL(10)68complexes.Theyalsosucceededinimmobilizingthelattercomplexbyattachingittoapolymerhavingapolystyrenebackbone(11).69Theeffectoftheimmobilizationontheenantioselectivitywasfoundtobesmall;goodenantioselectivities(over80%ee)wereensured.AnotherheterogeneouspolymericcatalystisAoya-ma’shelicalcoordinationpolymer(12),whichgavetheadditionproductofdimethylmalonateto2-cy-clohexenoneinca.70%ee28,70(Scheme21).
Scheme21
WefoundthatanovelcomplexcomposedofLa(O-i-Pr)3,(R)-BINOL,andDIPEA(1:3:3)isaseffectiveasthecorrespondingheterobimetalliccomplexesfortheMichaeladditionreactionofdibenzylmalonatetocyclohexenone.Furthermore,anotableasymmetricamplificationwasobservedinthereactioncatalyzedbythelanthanide-amine-BINOL(LAB)systemasshowninFigure9.71
TheMichaelreactionof2-(trimethylsilyloxy)furanswithoxazolidinoneenolateswasexaminedbyKat-sukiandco-workers.ThescandiumcomplexpreparedfromSc(OTf)3andaBINOLderivative(22)showedahighdiastereoselectivitybutwithamodestenan-tioselectivity(73%ee)(Scheme22).72
Scheme22
2220ChemicalReviews,2002,Vol.102,No.6Figure9.
Shibasaki’sLaK3[(R)-BINOL]3complex(La-9)wasfoundtocatalyzetheMichaeladditionofnitromethanetoconjugatedenoneswithhighenantioselectivities(upto97%ee)(Scheme23).73
Scheme23
EnantioselectiveconjugateadditionofO-benzyl-hydroxylaminetoR,-unsaturatedpyrazoleamidesusingaLn(OTf)3-bisoxazoline(34)complexwasre-portedbySibietal.togivethedesiredproductswithmoderateenantioselectivities(Scheme24).74
Scheme24
Recently,wefoundthattheSc[(R)-BNP]3complex(Sc-4)wasaquiteeffectivecatalystfortheadditionreactionofnitrogennucleophilestoconjugatedenones;theenantioselectiveadditionreactionofO-diphenyl-methylhydroxylaminetovariousconjugatedenoneswasaccomplishedatroomtemperaturewithalmostcompleteenantioselectivities(upto>99%ee)(Scheme25),andasshowninFigure10,asignificantasym-metricamplificationwasobservedinthisreaction.75TheMichaeladductsthusobtainedcanbecleanlyconvertedtothecorrespondingR-ketoaziridinesbycatalysiswithNaO-t-BuorLa(O-i-Pr)3.
J.EpoxidationofConjugatedEnones
Catalyticasymmetricepoxidationisanotherim-portantasymmetricprocess.Shibasakiandco-work-
Inanagaetal.
Figure10.Scheme25
erssuccessfullycarriedoutthehighlyenantioselec-tivecatalyticepoxidationofconjugatedenonesusinglanthanidecomplexespreparedfromLa(O-i-Pr)3and(R)-BINOL(18)or(R)-3-hydroxymethyl-BINOL(25)togivethecorrespondingepoxyketoneswithupto94%ee.76Thelattercatalystsystem,Yb(O-i-Pr)3/25,wasfoundtobequiteeffectivealsofortheepoxida-tionofcisenones(upto96%ee).77TheasymmetricamplificationobservedintheYb-(R)-BINOLcomplex-catalyzedepoxidationofbenzalacetoneisshowninFigure11,whichsuggeststhatsomeaggregationofthecatalystexists.76b
FromtheexperimentsdealingwiththeLn[(R)-BNP]3/2,6-lutidinecomplex-catalyzedhetero-Diels-Alderreaction(sectionA),wenoticedthattheadditionofanexternalligandtothechirallanthanidecomplexwasquiteeffectivenotonlyforsolubilizingthecatalystbutalsoforenhancingthestereoselec-tivity,whichsuggeststheimportanceofcoordinativesaturationofthelanthanidewithappropriateligandstodeoligomerizethepolymericcomplexes.Onthebasisoftheaboveidea,weexaminedtheeffectofavarietyofadditivesfortheLa-(R)-BINOLcomplex-catalyzedasymmetricepoxidationofchalconewithtert-butylhydroperoxide(TBHP)asanoxidant.78SomeselectedresultsareshowninTable2.Amongtheadditivestested,triphenylphosphineoxidegavethebestresultof96%eeandshowedanotableligand-accelerationofthereactionrate.
Itwasalsofoundthatcumenehydroperoxide(CMHP)istheoxidantofchoice.WhenCMHPwasusedinplaceofTBHP,theenantioselectivitywas
AsymmetricCatalysisandAmplificationwithChiralLanthanideComplexesFigure11.
Table2.
entryadditivetime,hee,%yield,%1none
3.073892lutidineN-oxide3.074964n-Bu3PdO3.073885Ph3PdO
0.596996(p-tolyl)3PddO1.094957(o-tolyl)3PddO1.573968(Me2N)3PdO
1.5
86
99
Table3.
entryR1R2time,hee,%yield,%1PhPh0.2>99992PhMe3.0>99903Phi-Pr4.0>99724Pht-Bu3.099935i-Pr
Ph3.098886
Ph(CH2)2
Me
1.0
86
60
furtherraisedtoover99%eeandtheamountofthecatalystcanbereducedto0.5mol%withoutaseriousdecreaseintheenantioselectivity.79Thismethodisapplicabletoawiderangeofsubstrates,ascanbeseenfromsomeexamplesinTable3.Inaddition,allofthereagentsrequiredforthisasymmetricepoxi-dationarecommerciallyavailableandthelowreac-tiontemperaturesusuallyrequiredtoattainahighenantioselectivityarenotnecessary,thusmakingtheprotocolhighlypractical.
Asexpectedfromtheaboveresults,averyhighasymmetricamplificationwasobservedintheepoxi-dationofchalconewithCMHPusingtheLa(O-i-Pr)3/(R)-BINOL/Ph3PO(1:1:3)system(Figure12).79Usingonly40%eeoftheligand,onecanattainmorethan99%enantioselectivity.
ChemicalReviews,2002,Vol.102,No.62221
Figure12.
Figure13.
Thisresultstronglysuggeststhattheactivecata-lystmaynotbemonomericandmayhaveaparticu-larstructurethathardlychangesduringthereactionbecauseofitsthermodynamicstability.Thiswasfurthersupportedbythefactthattheuseof(R)-3,3′-di(9-anthryl)-BINOL(23)inplaceof(R)-BINOL(18)inpreparingthecatalystsystemshowedtheoppositesenseofenantioselectionandthatneitherpositivenornegativenonlineareffectswereobservedintheepoxidation,suggestingamonomericstructureofthecatalystduetostericbulkinessofthe3,3′-anthrylgroups.80Thus,ahomochiraldimericcomplexlikeabinuclearµ-complex,composedofLa/(R)-BINOL/Ph3-PO/ROOH)1:1:1:1(Figure13),istentativelypro-posedasanactivecatalyticspeciesforthereaction;oneofthelanthanumionsmayworkasaLewisacidtoactivatethesubstrate,andtheperoxideattachedtotheotherlanthanumionmightbedeliveredasanactiveoxidant,thuscontrollingthestereochemistryoftheepoxidation.Actually,theepoxidationofchal-conewithCMHPusingthepreformedcatalystsys-tem,La(O-i-Pr)3/(R)-BINOL/Ph3PO/CMHP(1:1:1:1),affordedtheexpectedepoxidewith99%ee.79Thepresentprotocolissoconvenientandeffectivethatitcanbesuccessfullyappliedtolarge-scaleexperi-ments(e.g.,30kgscale;90%chemicalyield,>98%ee).81
Shibasakiandco-workersalsopointedoutthattheeffectivenessofadditivessuchaswater76bandtriphen-ylarsineoxide.82FromtheLDI-TOFMSspectrumofthecomplex,theLa(O-i-Pr)3/(R)-BINOL/Ph3AsO(1:1:1)structurewassuggested.Theysuccessfullyappliedthecatalysttothesynthesisofnaturalproducts82aandclaimedthattriphenylarsineoxideissuperiortotriphenylphosphineoxideasanadditivewithrespecttothereactionrateandthestoichiometry.82b
2222ChemicalReviews,2002,Vol.102,No.6Figure14.
Considerableasymmetricamplificationwasalsoobserved(Figure14),andtheformationofahetero-chiralcomplexasanineffectivecatalystwassug-gestedforthephenomenon.Furthermore,theydem-onstratedthattheprotocolisapplicabletotheepoxidationofR,-unsaturatedpyrazolamides,thusaffordingupto93%ee.83
K.Ring-OpeningReactionofMesoEpoxides
AsymmetricringopeningofcyclohexeneoxidewithanilinewasachievedbyHouandco-workers.84Theyusedacatalystsystem,Yb(OTf)3/(R)-BINOL/Ph2NBn,forthereactionandobtainedthecorrespondingtrans-1,2-aminoalcoholwith80%ee(Scheme26).
Scheme26
SchausandJacobsenreportedthattheasymmetricringopeningofmesoepoxideswithcyanotrimethyl-silane(TMSCN)canbecatalyzedbythechiralytterbiumcomplexpreparedinsitufromYbCl3andachiralPh-pybox(33),yieldingthe-trimethylsil-yloxynitrilering-openedproductswithgoodenanti-oselectivities(83-92%ee).85Thereactionexhibitsasecond-orderkineticdependenceonthecatalystconcentrationandafirst-orderdependenceontheepoxideconcentration,consistentwithabimetallicpathwayinvolvingsimultaneousactivationoftheepoxideandcyanide.Thiswasfurthersupportedbytheobservationofanotablepositivenonlineareffect(Figure15).
L.HydrosilylationHydrogenation,ofHydroamination,Olefins
andMarksandco-workerspreparedvariouschirallanthanidemetallocenes(13-16)bearing(-)-men-thylor(+)-neomenthylsubstituentsononeofthetwo
Inanagaetal.
Figure15.
cyclopentadienylringsconnectedwithdimethylsilylgroupandsuccessfullyusedthemforenantioselectiveolefinhydrogenation(upto96%ee)86andhydrosil-ylation(upto68%ee)87of1,1-disubstitutedethenesandalsoforintramolecularhydroamination(upto74%ee)86b,88(Scheme27).DetaileddiscussiononthissubjectisgivenbyMolanderetal.inthisissue.7
Scheme27
Recently,Tilleyetal.demonstratedthatthechiralyttriumhydridegeneratedinsitufrom[(S)-DADMB]-YMe(thf)2(17)(DADMB)2,2′-bis-(tert-butyldimeth-ylsilylamido)-6,6′-dimethylbiphenyl)worksasanef-ficientcatalystfortheenantioselectivehydrosilylationofnorbornene(90%ee)(Scheme28).89
Scheme28
AsymmetricCatalysisandAmplificationwithChiralLanthanideComplexesM.Miscellaneous
Anefficientenantiotopicdisplacementofpro-Rorpro-Schloridesonansp3carboncenterwithanalkylgroup,whichproceedsthroughMatteson’shomolo-gationprocess,wasattainedbyJadhavandManusingYb(OTf)3asamosteffectiveLewisacidincombinationwithachiralbisoxazolineligand(35)toaffordthecorrespondingalkylationproductwith88%ee(Scheme29).90
Scheme29
Naruseetal.reportedthattheeuropiumcomplex(1)isexceptionallyeffectivefortheenantiomericenrichmentofallenedicarboxylates.Forexample,diidopropylpenta-2,3-dienedioatewithover95%eewasrecoveredatthesacrificeoftheoppositeenan-tiomerwhenthesubstratewastreatedwithastoi-chiometricamountof(+)-1indeuteriochloroformat20°Cfor9days(Scheme30).91Theenantiomericenrichmentdoesnotseemtoproceedinacatalyticmanner.
Scheme30
IV.Conclusions
Chirallanthanidecomplexespreparedeitherinsituorasisolableformshavebeenshowntoef-fectivelycatalyzeavarietyofreactionswithhighenantioselectivities.Inallcases,lanthanideionsworkasaLewisacid,thusgatheringvariouschiralandachiralligands,substrates,and,insomecases,reagents.TheyhardlylosetheirLewisacidityeven,insomecases,inthepresenceofwater,amines,oraminoalcohols,althoughinsuchcircumstancesmosttraditionalLewisacidslosetheiractivitiesbyhy-drolysisorthroughthecompleteoccupationoftheircoordinationsites.Thelanthanidesprovidevariousionicradiicontinuouslywithintherangeof,e.g.,inthecaseofhexacoordinates,1.032(La3+)to0.861(Lu3+)orto0.745Å(Sc3+);therefore,fine-tuningoftransitionstructuresisoftenpossiblebychoosinganappropriatelanthanideionforthechirallanthanidecatalysts.However,inmanycasesexactcoordination
ChemicalReviews,2002,Vol.102,No.62223
numbersandstructuresoftheactivechirallan-thanidecatalystshavenotyetbeenfullydeterminedandtheissuesremaintobeclarifiedsoontoprovideaguidingprinciplefordesigningnewchirallan-thanidecomplexesasefficientcatalysts.
AlargenumberofexamplesofNLEshavebeenaccumulatedoverthepast15years.NLEsarenowrecognizedasaubiquitousphenomenoninasym-metricreactions,especiallyinenantioselectiveca-talysis.Thisisalsotrueforthecatalysiswithchirallanthanidecomplexes.Thus,notableasymmetricamplifications,(+)-NLEs,havebeenobservedinavarietyofreactions.SuchNLEscanbeexplainedintermsoftheself-organization,aggregation,and/orself-assembliesofthechiralcomplexesthatmayariseingivenreactions.Theremarkablyhighasymmetricamplificationsobservedinthelanthanidecomplex-catalyzedreactionsmayberesponsibleforthelargecoordinationnumberofthelanthanideions,whichisadvantageousfortherapidligandexchangeandalsofortheaggregationoftheheterochiralcomplexestogeneratecertainthermodynamicallystablecom-plexeswithverypoorcatalyticactivity.Asymmetricamplificationishighlyadvantageousfromapracticalviewpointbecauseitallowstheconvenientuseofenantiomericallyimpurechiralligandswithoutpu-rification.
V.Acknowledgments
OurworkinthisareawaspartlysupportedbytheMinistryofEducation,Culture,Sports,ScienceandTechnology,Japan,theJapanSocietyforthePromo-tionofScience,theAsahiGlassFoundationandtheNagaseScienceandTechnologyFoundation.
VI.References
(1)(a)Namy,J.L.;Girard,P.;Kagan,H.B.Nouv.J.Chim.1977,
1,5.(b)Girard,P.;Namy,J.L.;Kagan,H.B.Am.Chem.Soc.1980,102,2693.
(2)(a)Luche,J.L.J.Am.Chem.Soc.1978,100,2226.(b)Luche,J.
L.;Rodriguez,L.;Crabbe,P.J.Chem.Soc.,Chem.Commun.1978,601.(c)Gemal,A.L.;Luche,J.L.Am.Chem.Soc.1981,103,5454.
(3)Puchot,C.;Samuel,O.;Dun˜ach,E.;Zhao,S.;Agami,C.;Kagan,
H.B.J.Am.Chem.Soc.1986,108,2353.
(4)Forrecentmechanisticstudies,see:(a)Noyori,R.;Suga,S.;Oka,
H.;Kitamura,M.Chem.Rec.2001,1,85.(b)BlackmondD.G.J.Am.Chem.Soc.1998,120,13349.(c)Kitamura,M.;Suga,S.;Oka,H.;Noyori,R.J.Am.Chem.Soc.1998,120,9800.(d)Brunel,J.-M.;Luukas,T.O.;Kagan,H.B.Tetrahedron:Asym-metry1998,9,1941.(e)Blackmond,D.G.J.Am.Chem.Soc.1997,119,12934.(f)Kang,J.;Kim,J.B.;Kim,J.W.;Lee,D.J.Chem.Soc.,PerkinTrans.21997,189.(g)Faller,J.W.;Sams,D.W.I.;Liu,X.J.Am.Chem.Soc.1996,118,1217.(h)Guillaneux,D.;Zhao,S.-H.;Samuel,O.;Rainford,D.;Kagan,H.B.J.Am.Chem.Soc.1994,116,9430.
(5)Oguni,N.;Matsuda,Y.;Kaneko,T.J.Am.Chem.Soc.1988,
110,7877.
(6)Forreviews,see:(a)Kagan,H.B.Synlett2001,888.(b)
Blackmond,D.G.Acc.Chem.Res.2000,33,402.(c)Girard,C.;Kagan,H.B.Angew.Chem.,Int.Ed.Engl.1998,37,2922.(d)Kagan,H.B.;Girard,C.;Guillaneux,D.;Rainford,D.;Samuel,O.;Zhang,S.Y.;Zhao,S.H.ActaChem.Scand.1996,50,345.(e)Avalos,M.;Babiano,R.;Cintas,P.;Jime´nez,J.L.;Palacios,J.C.Tetrahedron:Asymmetry1997,8,2997.(f)Bolm,C.InAdvancedAsymmetricCatalysis;Stephenson,G.R.,Ed.;BlackieAcademicandProfessional:NewYork,1996;p9.(g)Noyori,R.;Kitamura,M.Angew.Chem.,Int.Ed.Engl.1991,30,49.(7)Molander,G.A.;Romero,J.A.C.Chem.Rev.2002,102,2161-2186.
(8)Kobayashi,S.Chem.Rev.2002,102,2227-2302.
(9)Shibasaki,M.;Yoshikawa,N.Chem.Rev.2002,102,2187-2210.(10)Aspinall,H.C.Chem.Rev.2002,102,1807-1850.
2224ChemicalReviews,2002,Vol.102,No.6
(11)(a)Bednarski,M.;Danishefsky,S.J.Am.Chem.Soc.1983,105,
3716.(b)Bednarski,M.;Maring,C.;Danishefsky,S.TetrahedronLett.1983,24,3451.
(12)Keller,F.;Weinmann,H.;Schurig,V.Chem.Ber.1997,130,879.(13)Quimpere,M.;Jankowski,K.J.Chem.Soc.,Chem.Commun.
1987,676.
(14)Mikami,K.;Kotera,O.;Motoyama,Y.;Sakaguchi,H.Synlett
1995,975.
(15)Qian,C.;Wang,L.TetrahedronLett.2000,41,2203.
(16)Inanaga,J.;Sugimoto,Y.;Hanamoto,T.NewJ.Chem.1995,
19,707.
(17)Hanamoto,T.;Furuno,H.;Sugimoto,Y.;Inanaga,J.Synlett
1997,79.
(18)Furuno,H.;Sugimoto,Y.;Hanamoto,T.;Inanaga,J.Presented
atthe70thNationalMeetingoftheChemicalSocietyofJapan,Tokyo,March1996.Manuscriptinpreparation.(19)Shannon,R.D.ActaCrystallogr.1976,A32,751.
(20)Furuno,H.;Hanamoto,T.;Sugimoto,Y.;Inanaga,J.Org.Lett.
2000,2,49.
(21)Hayano,T.;Sakaguchi,T.;Furuno,H.;Inanaga,J.Manuscript
inpreparation.
(22)Kambara,T.;Kagawa,T.;Furuno,H.;Inanaga,J.Presentedat
the79thNationalMeetingoftheChemicalSocietyofJapan,Kobe,March2001.Abstracts,4H4-39,p1234.Manuscriptinpreparation.
(23)Ishitani,H.;Kobayashi,S.TetrahedronLett.1996,37,7757.(24)Bromidge,S.;Wilson,P.C.;Whiting,A.TetrahedronLett.1998,
39,8905.
(25)(a)Kobayashi,S.;Ishitani,H.;Hachiya,I.;Araki,M.Tetrahedron
1994,50,11623.(b)Kobayashi,S.;Hachiya,I.;Ishitani,H.;Araki,M.TetrahedronLett.1993,34,4535.(c)Kobayashi,S.;Ishitani,H.;Araki,M.;Hachiya,I.TetrahedronLett.1994,35,6325.(d)Kobayashi,S.;Araki,M.;Hachiya,I.J.Org.Chem.1994,59,3758.(e)Kobayashi,S.;Ishitani,H.J.Am.Chem.Soc.1994,116,4083.
(26)Nishida,A.;Yamanaka,M.;Nakagawa,M.TetrahedronLett.
1999,40,1555.
(27)Fukuzawa,S.;Matsuzawa,H.;Metoki,K.Synlett2001,5,709.(28)Aoyama,Y.;Dewa,T.;Saiki,T.Polym.Prepr.(Am.Chem.Soc.,
Div.Polym.Chem.)2000,41,891.
(29)Morita,T.;Arai,T.;Sasai,H.;Shibasaki,M.Tetrahedron:
Asymmetry1998,9,1445.(30)(a)Marko´,I.E.;Evans,G.R.;Declercq,J.-P.Tetrahedron1994,
50,4557.(b)Marko´,I.E.;Evans,G.R.TetrahedronLett.1994,35,2771.(c)Marko´,I.E.;Evans,G.R.Bull.Soc.Chim.Belg.1994,103,295.
(31)Kobayashi,S.;Akiyama,R.;Kawamura,M.;Ishitani,H.Chem.
Lett.1997,1039.
(32)Sanchez-Blanco,A.I.;Gothelf,K.V.;Jørgensen,K.A.Tetrahe-dronLett.1997,38,2923.
(33)(a)Kobayashi,S.;Kawamura,M.J.Am.Chem.Soc.1998,120,
5840.(b)Kawamura,M.;Kobayashi,S.TetrahedronLett.1999,40,3213.
(34)Kodama,H.;Ito,J.;Hori,K.;Ohta,T.;Furukawa,I.J.Orga-nomet.Chem.2000,603,6.
(35)Qian,C.;Huang,T.TetrahedronLett.1997,38,6721.
(36)Qian,C.;Wang,L.Tetrahedron:Asymmetry2000,11,2347.(37)Sasai,H.;Suzuki,T.;Arai,S.;Arai,T.;Shibasaki,M.J.Am.
Chem.Soc.1992,114,4418.
(38)(a)Yamada,Y.M.A.;Yoshikawa,N.;Sasai,H.;Shibasaki,M.
Angew.Chem.,Int.Ed.Engl.1997,36,1871.(b)Yoshikawa,N.;Yamada,Y.M.A.;Das,J.;Sasai,H.;Shibasaki,M.J.Am.Chem.Soc.1999,121,4168.
(39)(a)Sasai,H.;Suzuki,T.;Itoh,N.;Shibasaki,M.Tetrahedron
Lett.1993,34,851.(b)Sasai,H.;Itoh,N.;Suzuki,T.;Shibasaki,M.TetrahedronLett.1993,34,855.(c)Sasai,H.;Suzuki,T.;Itoh,N.;Arai,S.;Shibasaki,M.TetrahedronLett.1993,34,2657.
(40)(a)Sasai,H.;Suzuki,T.;Itoh,N.;Tanaka,K.;Date,T.;Okamura,
K.;Shibasaki,M.J.Am.Chem.Soc.1993,115,10372.(b)Sasai,H.;Tokunaga,T.;Watanabe,S.;Suzuki,T.;Itoh,N.;Shibasaki,M.J.Org.Chem.1995,60,7388.(c)Arai,T.;Yamada,Y.M.A.;Yamamoto,N.;Sasai,H.;Shibasaki,M.Chem.Eur.J.1996,2,1368.(d)Sasai,H.;Watanabe,S.;Shibasaki,M.Enantiomer1997,2,267.(e)Takaoka,E.;Yoshikawa,N.;Yamada,Y.M.A.;Sasai,H.;Shibasaki,M.Heterocycles1997,46,157.
(41)Iseki,K.;Oishi,S.;Sasai,H.;Shibasaki,M.TetrahedronLett.
1996,37,9081.
(42)Sasai,H.;Hiroi,M.;Yamada,Y.M.A.;Shibasaki,M.Tetrahe-dronLett.1997,38,6031.
(43)Yamada,Y.;Harwood,S.J.;Gro¨ger,H.;Shibasaki,M.Angew.
Chem.,Int.Ed.Engl.1999,38,3504.
(44)Mascarenhas,C.M.;Miller,S.P.;White,P.S.;Morken,J.P.
Angew.Chem.,Int.Ed.Engl.2001,40,601.
(45)Uotsu,K.;Sasai,H.;Shibasaki,M.Tetrahedron:Asymmetry
1995,6,71.
(46)Kobayashi,S.;Hamada,T.;Nagayama,S.;Manabe,K.Org.Lett.
2001,3,165.
Inanagaetal.
(47)Yokomatsu,T.;Yamagishi,T.;Shibuya,S.Tetrahedron:Asym-metry1993,4,1783.
(48)Rath,N.P.;Spilling,C.D.TetrahedronLett.1994,35,227.(49)Yokomatsu,T.;Yamagishi,T.;Shibuya,S.J.Chem.Soc.,Perkin
Trans.11997,1527.
(50)Sasai,H.;Bougauchi,M.;Arai,T.;Shibasaki,M.Tetrahedron
Lett.1997,38,2717.
(51)Qian,C.;Huang,T.;Zhu,C.;Sun,J.J.Chem.Soc.,PerkinTrans.
11998,2097.
(52)Sasai,H.;Arai,S.;Tahara,Y.;Shibasaki,M.J.Org.Chem.1995,
60,6656.(53)(a)Gro¨ger,H.;Saida,Y.;Arai,S.;Martens,J.;Sasai,H.;
Shibasaki,M.TetrahedronLett.1996,37,9291.(b)Gro¨ger,H.;Saida,Y.;Sasai,H.;Yamaguchi,K.;Martens,J.;Shibasaki,M.J.Am.Chem.Soc.1998,120,3089.(c)Schlemminger,I.;Saida,Y.;Gro¨ger,H.;Naison,W.;Durot,N.;Sasai,H.;Shibasaki,M.;Martens,J.J.Org.Chem.2000,65,4818.
(54)Yamakoshi,K.;Harwood:S.J.;Kanai,M.;Shibasaki,M.
TetrahedronLett.1999,40,2565.
(55)(a)Abiko,A.;Wang,G.-Q.J.Org.Chem.1996,61,2264.(b)
Abiko,A.;Wang,G.-Q.Tetrahedron1998,54,11405.(56)Yang,W.-B.;Fang,J.-M.J.Org.Chem.1998,63,1356.
(57)Aspinall,H.C.;Greeves,N.;Smith,P.M.TetrahedronLett.1999,
40,1763.
(58)Qian,C.;Zhu,C.;Huang,T.J.Chem.Soc.,PerkinTrans.11998,
2131.
(59)(a)Zehani,S.;Gelbard,G.J.Chem.Soc.,Chem.Commun.1985,
1162.(b)Zehani,S.;Lin,J.;Gelbard,G.Tetrahedron1989,45,733.
(60)Evans,D.A.;Nelson,S.G.;Gagne´,M.R.;Muci,A.R.J.Am.
Chem.Soc.1993,115,9800.
(61)Huskens,J.;deGraauw,C.F.;Peters,J.A.;vanBekkum,H.
Recl.Trav.Chim.Pays-Bas1994,113,488.
(62)Ding,Z.-B.;Cheng,K.-J.;Wu,S.-H.Chin.J.Chem.1996,14,
561.
(63)Zhang,F.-Y.;Yip,C.-W.;Chan,A.S.C.Tetrahedron:Asymmetry
1996,7,2463.
(64)Bonadies,F.;Lattanizi,A.;Orelli,L.R.;Pesci,S.;Scettri,A.
TetrahedronLett.1993,34,7649.
(65)Sasai,H.;Arai,T.;Shibasaki,M.J.Am.Chem.Soc.1994,116,
1571.
(66)Sasai,H.;Arai,T.;Satow,Y.;Houk,K.N.;Shibasaki,M.J.Am.
Chem.Soc.1995,117,6194.
(67)Sasai,H.;Emori,E.;Arai,T.;Shibasaki,M.TetrahedronLett.
1996,37,5561.
(68)Kin,Y.S.;Matsunaga,S.;Das,J.;Sekine,A.;Ohshima,T.;
Shibasaki,M.J.Am.Chem.Soc.2000,122,6506.
(69)Matsunaga,S.;Ohshima,T.;Shibasaki,M.TetrahedronLett.
2000,41,8473.
(70)Saiki,T.;Dewa,T.;Aoyama,Y.Mol.Cryst.Liq.Cryst.Sci.
Technol.,Sect.A2000,342,241.
(71)Hayano,T.;Sakaguchi,T.;Furuno,H.;Inanaga,J.Unpublished
results.
(72)Kitajima,H.;Ito,K.;Katsuki,T.Tetrahedron1997,53,17015.(73)Funabashi,K.;Saida,Y.;Kanai,M.;Arai,T.;Sasai,H.;Shiba-saki,M.TetrahedronLett.1998,39,7557.
(74)Sibi,M.P.;Shay,J.J.;Liu,M.;Jasperse,C.P.J.Am.Chem.
Soc.1998,120,6615.
(75)Jin,X.-L.;Sugihara,H.;Daikai,K.;Inanaga,J.Manuscriptin
preparation.
(76)(a)Bougauchi,M.;Watanabe,S.;Arai,T.;Sasai,H.;Shibasaki,
M.J.Am.Chem.Soc.1997,119,2329.(b)Watanabe,S.;Kobayashi,Y.;Arai,T.;Sasai,H.;Bougauchi,M.;Shibasaki,M.TetrahedronLett.1998,39,7353.
(77)(a)Watanabe,S.;Arai,T.;Sasai,H.;Bougauchi,M.;Shibasaki,
M.J.Org.Chem.1998,63,8090.(b)Sasai,H.;Arai,T.;Watanabe,S.;Shibasaki,M.Catal.Today2000,62,17.
(78)Daikai,K.;Kamaura,M.;Inanaga,J.TetrahedronLett.1998,
39,7321.
(79)Inanaga,J.Presentedatthe1998InternationalSymposiumon
OrganicReactionssHshinchu,Hshinchu,Taiwan,1998;Ab-stract,p7.Daikai,K.;Kamaura,M.;Hanamoto,T.;Inanaga,J.JapanKokaiPatent2000-229242and2000-334307,2000.Daikai,K.;Kamaura,M.;Inanaga,J.AsymmetricEpoxidationoftrans-BenzylideneacetophenoneUsingtheLa-(R)-BINOL-Ph3PO/CumeneHydroperoxideSystem.InCatalystsforFineChemicalSyntheses;Poignant,G.,Roberts,S.M.,Eds.;Wiley-VCH:inpress.
(80)Ito,K.;Furuno,H.;Inanaga,J.Manuscriptinpreparation.(81)Inanaga,J.;Kagawa,T.Eur.PatentAppl.
(82)(a)Nemoto,T.;Ohshima,T.;Shibasaki,M.TetrahedronLett.
2000,41,9569.(b)Nemoto,T.;Ohshima,T.;Yamaguchi,K.;Shibasaki,M.J.Am.Chem.Soc.2001,123,2725.
(83)Nemoto,T.;Ohshima,T.;Shibasaki,M.J.Am.Chem.Soc.2001,
123,9474.
(84)Hou,X.-L.;Wu,J.;Dai,L.-X.;Xia,L.-J.;Tang,M.-H.Tetrahe-dron:Asymmetry1998,9,1747.
(85)Schaus,S.E.;Jacobsen,E.N.Org.Lett.2000,2,1001.
AsymmetricCatalysisandAmplificationwithChiralLanthanideComplexes
(86)(a)Conticello,V.P.;Brard,L.;Giardello,M.A.;Tsuji,Y.;Sabat,
M.;Stern,C.L.;Marks,T.J.J.Am.Chem.Soc.1992,114,2761.(b)Giardello,M.A.;Conticello,V.P.;Brard,L.;Gagne´,M.R.;Marks,T.J.J.Am.Chem.Soc.1994,116,10241.(c)Haar,C.M.;Stern,C.L.;Marks,T.J.Organometallics1996,15,1765.(d)Roesky,P.W.;Denninger,U.;Stern,C.L.;Marks,T.J.Organometallics1997,16,4486.
(87)Fu,P.-F.;Brard,L.;Li,Y.;Marks,T.J.J.Am.Chem.Soc.1995,
117,7157.
ChemicalReviews,2002,Vol.102,No.62225
(88)Gagne´,M.R.;Brard,L.;Conticello,V.P.;Giardello,M.A.;Stern,
C.L.;Marks,T.J.Organometallics1992,11,2003.
(89)Gountchev,T.I.;Tilley,T.D.Organometallics1999,18,5661.(90)Jadhav,P.K.;Man,H.-W.J.Am.Chem.Soc.1997,119,
846.
(91)Naruse,Y.;Watanabe,H.;Ishiyama,Y.;Yoshida,T.J.Org.
Chem.1997,62,3862.
CR010444T
因篇幅问题不能全部显示,请点此查看更多更全内容