您的当前位置:首页正文

中考必会几何模型:半角模型

2023-07-18 来源:意榕旅游网
半角模型

已知如图:①∠2=∠AOB;②OA=OB.

12O123FEAB

连接FB,将△FOB绕点O旋转至△FOA的位置,连接F′E,FE, 可得△OEF≌△OEF′

OF'4123FEA模型分析

∵△OBF ≌△OAF′, ∴∠3=∠4,OF=OF′. ∴∠2=∠AOB,

∴∠1+∠3=∠2 ∴∠1+∠4=∠2

又∵OE是公共边, ∴△OEF≌△OEF′.

(1)半角模型的命名:存在两个角度是一半关系,并且这两个角共顶点; (2)通过先旋转全等再轴对称全等,一般结论是证明线段和差关系; (3)常见的半角模型是90°含45°,120°含60°.

模型实例

例1 已知,正方形ABCD中,∠MAN=45°,它的两边分别交线段CB、DC于点M、N. (1)求证:BM+DN=MN.

(2)作AH⊥MN于点H,求证:AH=AB.

12B

1

证明:(1)延长ND到E,使DE=BM,

∵四边形ABCD是正方形,∴AD=AB. 在△ADE和△ABM中, ADAB ADEB

DEBM ∴△ADE≌△ABM.

∴AE=AM,∠DAE=∠BAM ∵∠MAN=45°,∴∠BAM+∠NAD=45°. ∴ ∠MAN=∠EAN=45°. 在△AMN和△AEN中, MAEA MANEAN

ANAN ∴△AMN≌△AEN. ∴MN=EN.

∴BM+DN=DE+DN=EN=MN.

(2)由(1)知,△AMN≌△AEN. ∴S△AMN=S△AEN.

11 即AHMNADEN.

22 又∵MN=EN, ∴AH=AD. 即AH=AB.

2

例2 在等边△ABC的两边AB、AC上分别有两点M、N,D为△ABC外一点,且 ∠MDN=60°,∠BDC=120°,BD=DC.探究:当M、N分别在线段AB、AC上移动时,BM、NC、MN之间的数量关系.

(1)如图①,当DM=DN时,BM、NC、MN之间的数量关系是_______________;

(2)如图②,当DM≠DN时,猜想(1)问的结论还成立吗?写出你的猜想并加以证明.

图① 图②

解答

(1)BM、NC、MN之间的数量关系是BM+NC=MN. (2)猜想:BM+NC=MN.

证明:如图③,延长AC至E,使CE=BM,连接DE. ∵BD=CD,且∠BDC=120°, ∴∠DBC=∠DCB=30°. 又∵△ABC是等边三角形, ∴∠ABC=∠ACB=60°. ∴∠MBD=∠NCD=90°. 在△MBD与△ECD中,

∵DB=DC,∠DBM=∠DCE=90°,BM=CE, ∴△MBD≌△ECD(SAS). ∴DM=DE,∠BDM=∠CDE. ∴∠EDN=∠BDC-∠MDN=60°. 在△MDN和△EDN中,

∵MD=ED,∠MDN=∠EDN=60°,DN=DN, ∴△MDN≌△EDN(SAS). ∴MN=NE=NC+CE=NC+BM.

3

图③

例3 如图,在四边形ABCD中,∠B+∠ADC=180°,AB=AD,E、F分别是BC、CD延 长线上的点,且∠EAF=

1∠BAD.求证:EF=BE-FD. 2

证明:在BE上截取BG,使BG=DF,连接AG. ∵∠B+∠ADC=180°,∠ADF+∠ADC=180°, ∴∠B=∠ADF.

在△ABG和△ADF中, ABAD BADF

BGDF ∴△ABG ≌△ADF(SAS). ∴∠BAG=∠DAF,AG=AF. ∴∠GAF=∠BAD.

11∠BAD=∠GAF. 22 ∴∠GAE=∠EAF. 在△AEG和△AEF中, ∴∠EAF=AGAF GAEFAE

AEAE ∴△AEG ≌△AEF(SAS). ∴EG=EF.

4

∵EG=BE-BG, ∴EF=BE-FD.

跟踪练习:

1.已知,正方形ABCD,M在CB延长线上,N在DC延长线上,∠MAN=45°. 求证:MN=DN-BM.

【答案】

证明:如图,在DN上截取DE=MB,连接AE, ∵四边形ABCD是正方形, ∴AD=AB,∠D=∠ABC=90°. 在△ABM和△ADE中, ADAB DABM

BMDE ∴△ABM≌△ADE.

∴AM=AE, ∠MAB=∠EAD . ∵∠MAN=45°=∠MAB+∠BAN, ∴∠DAE+∠BAN=45°. ∴∠EAN=90°-45°=45°=∠MAN. 在△AMN和△AEN中, AMAE MANEAN

ANAN5

∴△ABM≌△ADE. ∴MN=EN. ∵DN-DE=EN. ∴DN-BM=MN.

2.已知,如图①在Rt△ABC中,∠BAC=90°,AB=AC,点D、E分别为线段BC上两动 点,若∠DAE=45°,探究线段BD、DE、EC三条线段之间的数量关系. 小明的思路是:把△AEC绕点A顺时针旋转90°,得到△ABE′,连接E′D使问题得到解 决.请你参考小明的思路探究并解决以下问题:

(1)猜想BD、DE、EC三条线段之间的数量关系式,并对你的猜想给予证明;

(2)当动点E在线段BC上,动点D运动到线段CB延长线上时,如图②,其他条件不 变,(1)中探究的结论是否发生改变?请说明你的猜想并给予证明.

图① 图②

【答案】

解答:(1)猜想:DE2=BD2+EC2. 证明:将△AEC绕点A顺时针旋转90°得到△ABE′,如图① ∴△ACE≌△ABE′.

∴BE′=EC,AE′=AE,∠C=∠ABE′,∠EAC=∠E′AB. 在Rt△ABC中, ∵AB=AC,

∴∠ABC=∠ACB=45°.

∴∠ABC+∠ABE′=90°,即∠E′BD=90°. ∴E′B2+BD2=E′D2. 又∵∠DAE=45°, ∴∠BAD+∠EAC=45°. ∴∠E′AB+∠BAD=45°,即∠E′AD=45°.

6

∴△AE′D≌△AED. ∴DE=DE′.

∴DE2=BD2+EC2.

图①

(2)结论:关系式DE2=BD2+EC2仍然成立.

证明:作∠FAD=∠BAD,且截取AF=AB,连接DF,连接FE,如图② ∴△AFD≌△ABD.

∴FD=DB,∠AFD=∠ABD. 又∵AB=AC, ∴AF=AC.

∵∠FAE=∠FAD+∠DAE=∠FAD+45°, ∠EAC=∠BAC-∠BAE=90°-(∠DAE-∠DAB )=90°-(45°-∠DAB)=45°+∠DAB, ∴∠FAE=∠CAE. 又∵AE=AE,

∴△AFE≌△ACE.

∴FE=EC,∠AFE=∠ACE=45°. ∠AFD=∠ABD=180°-∠ABC=135°. ∴∠DFE=∠AFD-∠AFE=135°-45°=90°. 在Rt△DFE中,DF2+FE2=DE2. 即DE2=BD2+EC2.

图②

3.已知,在等边△ABC中,点O是边AC、BC的垂直平分线的交点,M、N分别在直线 AC、BC上,且∠MON=60°.

(1)如图①,当CM=CN时,M、N分别在边AC、BC上时,请写出AM、CN、MN三 者之间的数量关系;

(2)如图②,当CM≠CN时,M、N分别在边AC、BC上时,(1)中的结论是否仍然 成立?若成立,请你加以证明;若不成立,请说明理由; (3)如图③,当点M在边AC上,点N在BC的延长线上时,请直接写出线段AM、CN、 MN三者之间的数量关系.

7

图① 图② 图③

【答案】

结论:(1)AM=CN+MN;如图①

图①

(2)成立;

证明:如图②,在AC上截取AE=CN,连接OE、OA、OC. ∵O是边AC、BC垂直平分线的交点,且△ABC为等边三角形, ∴OA=OC,∠OAE=∠OCN=30°,∠AOC=120°. 又∵AE=CN,

∴△OAE≌△OCN.

∴OE=ON,∠AOE=∠CON. ∴∠EON=∠AOC=120°. ∵∠MON=60°,

∴∠MOE=∠MON=60°. ∴△MOE≌△MON. ∴ME=MN.

∴AM=AE+ME=CN+MN.

图②

(3)如图③,AM=MN-CN.

8

图③

4.如图,在四边形ABCD中,∠B+∠D=180°,AB=AD,E、F分别是线段BC、CD上的 点,且BE+FD=EF.求证:∠EAF=

1∠BAD. 2

【答案】

证明:如图,把△ADF绕点A顺时针旋转∠DAB的度数得到△ABG,AD旋转到AB,AF旋转到AG,

∴AG=AF,BG=DF,∠ABG=∠D,∠BAG=∠DAF. ∵∠ABC+∠D=180°, ∴∠ABC+∠ABG=180°. ∴点G、B、C共线. ∵BE+FD=EF, ∴BE+BG=GE=EF. 在△AEG和△AEF中, AGAFAEAE EGEF∴△AEG≌△AEF. ∴∠EAG=∠EAF.

∴∠EAB+∠BAG=∠EAF. 又∵∠BAG=∠DAF,

∴∠EAB+∠DAF=∠EAF. ∴∠EAF=

1∠BAD. 29

5.如图①,已知四边形ABCD,∠EAF的两边分别与DC的延长线交于点F,与CB的延长线交于点E,连接EF. (1)若四边形ABCD为正方形,当∠EAF=45°时,EF与DF、BE之间有怎样的数量关系?(只需直接写出结论)

(2)如图②,如果四边形ABCD中,AB=AD,∠ABC与∠ADC互补,当∠EAF=

1∠BAD2时,EF与DF、BE之间有怎样的数量关系?请写出结论并证明.

(3)在(2)中,若BC=4,DC=7,CF=2,求△CEF的周长(直接写出结论)

解答:

(1)EF=DF-BE (2)EF=DF-BE

证明:如图,在DF上截取DM=BE,连接AM, ∵∠D+∠ABC=∠ABE+∠ABC=180° ∵D=ABE ∵AD=AB

在△ADM和△ABE中,

DMBEDABE ADAB∴△ADM≌△ABE

∴AM=AE,∠DAM=∠BAE ∵∠EAF=∠BAE+∠BAF=

1∠BAD, 210

∴∠DAM+∠BAF=∴∠MAF=

1∠BAD 21∠BAD 2∴∠EAF=∠MAF

在△EAF和△MAF中

AEAMEAFMAF AFAF∴△EAF≌△MAF ∴EF=MF

∵MF=DF-DM=DF-BE, ∴EF=DF-BE

(3)∵EF=DF-BE

∴△CEF的周长=CE+EF+FC=BC+BE+DC+CF-BE+CF =BC+CD+2CF=15

11

因篇幅问题不能全部显示,请点此查看更多更全内容