您的当前位置:首页正文

流体力学泵与风机课后答案详解中国建筑工业出版社

2022-08-04 来源:意榕旅游网


流体力学泵与风机

2-15

解:(1)当1为空气 p1p2

pBzhpA ppApBzh

9.810000.3

2940pa2.94kpa (2)当1为油 p1p3

pAp1hHz pBp31hH

ppApBp1p3hHz1hH

hz1h

9.810000.19.810000.290000.1

1

2040pa2.04kpa

2-16

解:p1p2

p1pM水Hh1h2

p2pa油h1汞h2

pM水Hh1h2pa油h1汞h2

9809.810001.50.2h17850h113.69.810000.2

98098001.598000.29800h17850h126656

1950h126656980147001960

h15.63m

2-28

解:ph1h2

hhbhhh2b1Ph1h212122sin450sin450

2

13229.810003219.810003212sin450sin450

5234650N34.65kN2

9.81000hhblhhh2bl1h1h212D112D2002sin45sin45lDP

9.810002229.810002222232.45m59.8100022

2-32

h21h2bhb200sin452sin45

解:

Ph19.810001

21229.810002222222

9.8100082110857.6N110.8576kN

h2hh12h12h2h2213h1bhb20000sin45sin452sin45sin45lDP

9.8100042229.81000429.8100082723

3

1362 l137p62262

GlGPlPTlT

19.6219.8100082762T2

T9.81274.43101.31kN

2-41

解:hrsin4502

Phh1x2b

9.8100022124

39200N39.2kN

PzV

r24513602rsin450rcos450b 9.81000113.142282224

4

22344N22.344kN

P39.2222.344245.1kN

Pz22.344arctanarctan0.57300Px39.2arctan

3-3

4解:(1)

Qd32v340.0252100.0049m3/s Q4.9kg/s

d3d3v1v0.625m/sv2d3dv32.5m/s12(2)

223-5

33Q10000m/h2.778m/s 解:

vQ420m/sd2

4Q0.177v

所以,

d所以,d0.45m450mm

5

vQ4此时,

d24Q11.11217.4m/sd20.63585

3-6

d2解:

A1A2A3A4A254520d

AA1111d2d222040

A1212A2220d40d2 A113A320d240d22 AA114420d240d22

AA1155220d240d2

d21141140d2

d110d r1210d d242340d2

d2310d r23210d254d340d2

d55310d r3210d6

7772ddrddd4410 210 440

243392ddrddd5510 210 440

25GQd2402u1u2u3u4u5d220u1u2u3u4u5

3-7

解:干管前端的质量流量为:

Q11v1A12.6225d124

2.622540.050.128544kg/s2

Q2Q3Q10.064272kg/s2

Q20.064272v222.247m/s2A22.30.0424

Q30.06427218.05m/s3A32.240.04524

v33-10

7

解:将基准面建立在B点经过的水平面上,列能量方程:

z1p11v122gz2p222v22g

d12v22v14.5m/s1.5mp1其中,z11.2m  v12m/s d2.21.522p24.5212g02g

p2 1.21.5222g4.522g1.871

3-11

解:将2点所在的水平面作为基准面,列能量方程:

z1p121v12v2222gz2p2g

p1z13 zp220  v13m/s

p132232g0p2v22g

v22gh328.2m/s

8

121

2v2d18.2v1d23 所以,d20.12m

3-14

解:以水面为基准面,列0-0和D-D的能量方程:

z0p020v02gzDpD2DvD2g

p0z00 020v0 2g2DvD0pD zD4 2DvD0

000402g 所以,2g4,即,vD429.88.85m/s

所以,

Q4d2vD40.0528.850.017368m3/s

22AvADvD2g:2g44dD:dA1:81

列0-0和A-A断面的能量方程:

z0p020v02gzApA2AvA2g

0007pA481

9

pA所以,7481 所以,pA68.1kpa

列0-0和B-B断面的能量方程:

z0p020v02gzBpB2BvB2g

pB49.80.484kpa81

列0-0和C-C断面的能量方程:

z0p020v02gzCpC2CvC2g

4pC29.820.1kpa81

pD0

3-18

解:将基准面建在管道所在的水平面上,列能量方程:

z1p11v122gz2p222v22ghl12

2490.982v200019.89.82g

10

2v23.92g v28.74m/s

3-19

解:(1)(a)将基准面建在A所在的水平面上,列0-0和C-C断面的能量方程:

z20v0C2CvC0p02gzCp2g

400002CvC2g

2CvC2g4 vC89.88.85m/s22BvB:CvC2g2gs2:s2CB4:1

2BvB2g1 v129.84.43m/s (b)

20v0v2AA(c)

z0p02gzApA2g4000pA1

且 vAvB

11

pA3 pA29.4kpa

p020v0(2)(a)

z02gzCpC2CvC2ghl12

其中,

hl122v12v2432g2g

222v2v2v24000032g2g2g

2v242g5 所以,v23.96m/s

1v1v21.96m/s2

(b)

v12z0z122g2g2g (c)

p0p120v01v12

4000p135

p1 435 p133.32kpa

p222v222v23v2z0z242g2g2g22g

p020v0 12

4000p244345525

p211.76kpa

3-20

解:

p1v122az2z1p22v22pl12

v12Q4d20.022420.38m/s3.140.052

0.02410.19m/s3.140.052v2Q4d2

pl122v12v23422

2v12v2p1az2z1p2342222

v122v22v124v2

2v12v2v12p1300341.20.630309.82222

2v2222v2v2v230012441.20.630309.82222

2v2 13

300130.610.1920.6609.82

352.16pa

p1352.1644.6mm7.9

h3-22

解:G176.2kN/h0.048944kN/s

0.048944103Q7.1347m3/s9.80.7

Gv2Q4d24Q47.13479.09m/s2d3.14

v222p1v122aHp2pl12

33ph1010109.898pa v011其中,,

20.79.092Hv29801.20.79.8H00.0352d2g

0.79.0929.0929801.20.79.8H00.035H0.79.8229.8

984.9H28.91.0122H

14

所以,H32.64m

1vM21p1aHpMpl122222

10.79.0920.03532.649.092v1298021.20.79.832.64pM9879.968pM28.916.52

所以,pM63.45pa

3-26

3-28

解:列连续性方程:

vQ0.441D23.140.423.18m/s4

v0.442Q23.140.1250.96m/s4d

列能量方程:

2zp1v22211v12gz2p22g

2215

129.80.79.8

p122v22g1v122g

50.9623.182131.98m29.8

p1131.989.81293.404kpa

列动量方程:

FQvp12v1

d2RQv2v14D2p24

1293.40440.42R0.450.963.18

R1293.40440.420.447.78143.339kN

R11.94kN12

3-33

解:列能量方程:

z1p11v122gz2p222v22g

16

其中,

v13v25

v1292v225

1.501v122g0.9022v22g

22v29v20.62g252g

v24.3m/s v12.58m/s

FQv2v1

1212h1bh2bRQv2v122

3Q2.581.21.54.644m/s 其中,

119.81031.529.81030.92R10004.6441.7222

R480.2N

Q10kg/s4-2 (1) d100mm0.1m 

QQ0.01m3/s

v4Q40.011.274m/s22d3.140.1 vd1.2740.1838711.519106 (紊流)

17

1.519106m2/s

Re

(2)

QQ10kg/s

Q100.011765m3/s850

v4Q40.0117651.4987m/s42221.1410m/s d3.140.1 vd1.49870.113151.14104

Re0624-3 解:d0.3m T20C 15.710m/s

Re200015.7106vmax104.67103m/sd0.3

3.140.32QmaxvmaxA104.67107.3947103m3/s4

3Q7.39471031.2360031.9kg/h

4-4 解:

d22d12v1d224v 2d1

14v2d2vd22ReRe1112 所以,

Re12Re2

5Re6104-12 紊流粗糙区,

18

Re61051.308106v3.14m/sRed0.25,所以,

vd3.140.252Qv3.140.154m3/s44

3Q200L/s0.2m/s 14-13

d2v14Q1vd4.0764330.2564.076433m/sRe0.7791101d21.308106

Q220L/s v20.4076433m/s

Re27.791104

Q35L/s

v30.1019m/s

Re31.9478104

查尼氏图,得到,

Reu6105

Rel4104Re3RelRe2ReuRe1,

所以,Q1属于紊流粗糙区,Q2属于紊流过渡区,Q3属于紊流光滑区,

(1) 对于Q1,采用希弗林松公式,

K10.11d0.250.51030.110.250.250.02326

19

lv121004.0764332hf110.023267.888md2g0.2529.8

(2) 对于Q2,采用阿公式,

20.11K68dRe0.250.5100.110.2536847.791100.250.02547

hf22lv21000.407643320.02547d2g0.2529.820.086m

(3) 对于Q3,采用布公式

0.31640.31640.026780.250.25Re19477.5

230.40764332lv310040.005676mhf330.02678d2g0.2529.8

Reu21054-15

Rel4000

3 d0.05m K0.2510m

Reu21051.007106vmax4.028m/sd0.05

Qmaxvmaxd23.140.0524.0287.905L/s44

20

vminRel40001.0071068.056102d0.05

Qminvmind28.0561023.140.0520.01581102m3/s0.1581L/s

44d1v14-21 (1)

da2 v122a

hlv2164lv2164lv21f11d2gRe11d12gv1d1d12g hf1hv21d21f2vd221a4 a1.19

0.31640.25lv21hf1v0.251d0.251d12g1.751.25hf20.31640.25lv2v1d212v2d2a4.75(2)

v0.25d0.2522d22g0.25Klv2h0.111f1hdd2gv2d1.251110.25f210.11v2d5.25(3)

Klv222ad12d22g 0.3294-24 解:

Q2600.002742m3/s

4Q40.

vd20027423.140.0521.3972m/s

21

a1.16

a1.14

2lv0.6292g d

1.3972260.62929.8 0.3151

4-26 解:(1) 突然缩小

10.51A278.50.510.375A1314

v222hj110.3750.0765m76.5mm2g29.8

(2)20.5

v222hj220.50.102m102mm2g29.8

22A178.59311A231416(3)

922hj30.115m115mm1629.8

(4)41

22hj410.204m204mm29.8

22

22v1vmvmv1hhjj4-27 解:

2g2g

hhjjvm2v1vm12vmv202g2g

所以,

vmv1v22

vvvvv11212v121v1v222hjhj2hj2g2g22g此时,

22333Q16m/h4.4410m/s 4-29 解:

4Q44.44103v122.2624m/s2d13.140.05 4Q44.44103v220.5656m/s2d3.140.12

p1p22v12v25.91732.262420.56560.140674m2g10009.829.8

hj2v12v2hj1hj22g 10.5387 2g 28.619

l11081.2d80.020.2Sp1214608.524d13.140.25-17 解:

23

8l20.0250Sd281.2p22d4.1420.20.243042.723 8l350Sd3p380.021.20.12d4.1420.149736733

SpSp1Sp2Sp3608.53042.797367101018.3

p21SpQ1101018.30.1522272.91N/m2

p22SpQ2101018.30.1622586.1N/m2

SQ2120SQ222Q3SQ2155-25 解:

SQ2Q322SQ2310 S106

解得,Q14.472103m3/s Q22.41103m3/s8l180.022005-27 解:Sd112d4.1420.20.241034.941g39.8

8l2100d280.025S20.12d4.1420.1420698.82g39.8

24

Q30.63103m3/s

l3720880.02d0.23725.78S3243d3g3.1420.249.8

111110.03803532.1705143.87S1S1S2 所以,S1691.25

S3Q2HS11)

QH1660.186103m3/sS3S14417

1SQH2SQH2) 2

28SS3S13S31325124d3g

132513.1420.29.8256.18

45-28 解:

SABlAB20080.028dAB0.324136.286dABg3.1420.349.8

SAClAC16080.028dAC0.324109.0292dACg3.140.349.8

SAD

lAD20080.028dAD0.42432.34dADg3.1420.449.8

25

SBCSCDlBC12080.028dBC0.32481.77224dBCg3.140.39.8

pA2.8105

pASABQ

2ABQABpA2.81050.457868m3/sSAB136.28610009.8

pASADQ

2ADQAD2.81050.93993m3/sSAD32.3410009.8pA

pASAC2QBCSBCQBC

22QBCQCDpA0.23488m3/s4SACSBC

Q2QABQBC0.69275m2/s

Q3QADQCD1.17481m2/s

Q1Q2Q31.86756m3/s

2pCSBCQBC44.2kN/m2

26

因篇幅问题不能全部显示,请点此查看更多更全内容