南阳市第二中学2018-2019学年上学期高二数学12月月考试题含解析
班级__________ 姓名__________ 分数__________
一、选择题
1. 若命题p:∃x0∈R,sinx0=1;命题q:∀x∈R,x2+1<0,则下列结论正确的是( ) A.¬p为假命题 B.¬q为假命题 C.p∨q为假命题 D.p∧q真命题
2. 如图Rt△O′A′B′是一平面图形的直观图,斜边O′B′=2,则这个平面图形的面积是( )
A. B.1 C. D.
3. 已知某几何体的三视图的侧视图是一个正三角形,如图所示,则该几何体的体积等于( )
A.123 B.163 C.203 D.323 4. 在某次测量中得到的A样本数据如下:82,84,84,86,86,86,88,88,88,88.若B样本数据恰好是A样本数据都加2后所得数据,则A,B两样本的下列数字特征对应相同的是( ) A.众数 B.平均数 C.中位数 D.标准差
5. 已知函数f(2x+1)=3x+2,且f(a)=2,则a的值等于( ) A.8
B.1
C.5
D.﹣1
6. 天气预报说,在今后的三天中,每一天下雨的概率均为40%.现采用随机模拟试验的方法估计这三天中恰有两天下雨的概率:先利用计算器产生0到9之间取整数值的随机数,用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨;再以每三个随机数作为一组,代表这三天的下雨情况.经随机模拟试验产生了如下20组随机数:
907 966 191 925 271 932 812 458 569 683
第 1 页,共 15 页
精选高中模拟试卷
431 257 393 027 556 488 730 113 537 989 据此估计,这三天中恰有两天下雨的概率近似为( ) A.0.35 B.0.25 C.0.20 D.0.15
7. 偶函数f(x)的定义域为R,若f(x+2)为奇函数,且f(1)=1,则f(89)+f(90)为( ) A.﹣2 B.﹣1 C.0 D.1
28. 设函数f+xf( ′x)′x)(x)在R上的导函数为f(,且2f(x)>x,下面的不等式在R内恒成立的是( )
A.f(x)>0 B.f(x)<0 C.f(x)>x D.f(x)<x
9. 某几何体的三视图如图所示,则该几何体的表面积为( )
A.8+2 B.8+8 C.12+4 D.16+4
10.一个几何体的三视图如图所示,如果该几何体的侧面面积为12π,则该几何体的体积是( )
A.4π B.12π C.16π D.48π
11.已知三个数a1,a1,a5成等比数列,其倒数重新排列后为递增的等比数列{an}的前三 项,则能使不等式a1a2an11a1a21成立的自然数的最大值为( ) anA.9 B.8 C.7 D.5 12.记
,那么
ABCD
第 2 页,共 15 页
精选高中模拟试卷
二、填空题
13.某工厂的某种型号的机器的使用年限x和所支出的维修费用y(万元)的统计资料如表: x 6 8 10 12 y 2 3 5 6 根据上表数据可得y与x之间的线性回归方程
=0.7x+
,据此模型估计,该机器使用年限为14年时的维修
费用约为 万元.
14.已知fx12x28x11,则函数fx的解析式为_________. 15.若非零向量
,
满足|
+
|=|
﹣
|,则
与
所成角的大小为 .
16.函数yfx图象上不同两点Ax1,y1,Bx2,y2处的切线的斜率分别是kA,kB,规定
A,BkAkB(AB为线段AB的长度)叫做曲线yfx在点A与点B之间的“弯曲度”,给 AB出以下命题:
①函数yx3x21图象上两点A与B的横坐标分别为1和2,则A,B3; ②存在这样的函数,图象上任意两点之间的“弯曲度”为常数; ③设点A,B是抛物线yx21上不同的两点,则A,B2;
④设曲线ye(e是自然对数的底数)上不同两点Ax1,y1,Bx2,y2,且x1x21,若tA,B1x恒成立,则实数t的取值范围是,1.
其中真命题的序号为________.(将所有真命题的序号都填上)
17.B={x|﹣2<x<4}, ∩B=∅,设集合A={x|x+m≥0},全集U=R,且(∁UA)求实数m的取值范围为 .18.如图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是.已知样本中平均气温不大于22.5℃的城市个数为11,则样本中平均气温不低于25.5℃的城市个数为 .
第 3 页,共 15 页
精选高中模拟试卷
三、解答题
19.如图,在长方体ABCD﹣A1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上移动. (1)证明:BC1∥平面ACD1. (2)当
时,求三棱锥E﹣ACD1的体积.
20.△ABC的三个内角A、B、C所对的边分别为a、b、c,asinAsinB+bcos2A=(Ⅰ)求;
22
(Ⅱ)若c=b+
a.
a2,求B.
21.已知全集U=R,函数y=(1)集合A,B; (2)(∁UA)∩B.
+
的定义域为A,B={y|y=2,1≤x≤2},求:
x
第 4 页,共 15 页
精选高中模拟试卷
22.已知m∈R,函数f(x)=(x2+mx+m)ex. (1)若函数f(x)没有零点,求实数m的取值范围;
23
(3)当m=0时,求证:f(x)≥x+x.
(2)若函数f(x)存在极大值,并记为g(m),求g(m)的表达式;
23.如图所示,在边长为
的正方形ABCD中,以A为圆心画一个扇形,以O为圆心画一个圆,M,N,
K为切点,以扇形为圆锥的侧面,以圆O为圆锥底面,围成一个圆锥,求圆锥的全面积与体积.
24.(本小题满分12分)
如图,在四棱锥SABCD中,底面ABCD为菱形,E、P、Q分别是棱AD、SC、AB的中点,且SE平面ABCD.
第 5 页,共 15 页
精选高中模拟试卷
(1)求证:PQ//平面
SAD; (2)求证:平面SAC平面SEQ.
第 6 页,共 15 页
精选高中模拟试卷
南阳市第二中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案) 一、选择题
1. 【答案】A 【解析】解:∴∃x0∈R,sinx0=1; ∴命题p是真命题;
22
由x+1<0得x<﹣1,显然不成立;
时,sinx0=1;
∴命题q是假命题;
∴¬p为假命题,¬q为真命题,p∨q为真命题,p∧q为假命题; ∴A正确. 故选A.
2
【点评】考查对正弦函数的图象的掌握,弧度数是个实数,对∀∈R满足x≥0,命题¬p,p∨q,p∧q的真假和
命题p,q真假的关系.
2. 【答案】D
【解析】解:∵Rt△O'A'B'是一平面图形的直观图,斜边O'B'=2, ∴直角三角形的直角边长是∴直角三角形的面积是∴原平面图形的面积是1×2故选D.
3. 【答案】C 【解析】
=2
,
,
考点:三视图. 4. 【答案】D
【解析】解:A样本数据:82,84,84,86,86,86,88,88,88,88. B样本数据84,86,86,88,88,88,90,90,90,90 众数分别为88,90,不相等,A错.
第 7 页,共 15 页
精选高中模拟试卷
平均数86,88不相等,B错. 中位数分别为86,88,不相等,C错 A样本方差S2=B样本方差S2=故选D.
【点评】本题考查众数、平均数、中位标准差的定义,属于基础题.
5. 【答案】B
【解析】解:∵函数f(2x+1)=3x+2,且f(a)=2,令3x+2=2,解得x=0, ∴a=2×0+1=1.
故选:B.
6. 【答案】B
【解析】解:由题意知模拟三天中恰有两天下雨的结果,经随机模拟产生了如下20组随机数, 在20组随机数中表示三天中恰有两天下雨的有:191、271、932、812、393,共5组随机数, ∴所求概率为故选B.
7. 【答案】D
.
[(82﹣86)2+2×(84﹣86)2+3×(86﹣86)2+4×(88﹣86)2]=4,标准差S=2, [(84﹣88)2+2×(86﹣88)2+3×(88﹣88)2+4×(90﹣88)2]=4,标准差S=2,D正确
【解析】解:∵f(x+2)为奇函数, ∴f(﹣x+2)=﹣f(x+2), ∵f(x)是偶函数,
∴f(﹣x+2)=﹣f(x+2)=f(x﹣2), 即﹣f(x+4)=f(x),
即函数f(x)是周期为8的周期函数, 则f(89)=f(88+1)=f(1)=1, f(90)=f(88+2)=f(2), 由﹣f(x+4)=f(x), 则f(2)=0,
则f(x+4)=﹣f(x),f(x+8)=﹣f(x+4)=f(x),
得当x=﹣2时,﹣f(2)=f(﹣2)=f(2), 故f(89)+f(90)=0+1=1,
第 8 页,共 15 页
精选高中模拟试卷
故选:D.
【点评】本题主要考查函数值的计算,利用函数奇偶性的性质,得到函数的对称轴是解决本题的关键.
8. 【答案】A
2
【解析】解:∵2f(x)+xf′(x)>x, 令x=0,则f(x)>0,故可排除B,D.
22
如果 f(x)=x+0.1,时 已知条件 2f(x)+xf′(x)>x 成立,
但f(x)>x 未必成立,所以C也是错的,故选 A
故选A.
9. 【答案】D
【解析】解:根据三视图得出该几何体是一个斜四棱柱,AA1=2,AB=2,高为
,
根据三视图得出侧棱长度为∴该几何体的表面积为2×(2×故选:D
=2,
+2×2+2×2)=16
,
【点评】本题考查了空间几何体的三视图,运用求解表面积,关键是恢复几何体的直观图,属于中档题.
10.【答案】B 【解析】解:由三视图可知几何体是底面半径为2的圆柱, ∴几何体的侧面积为2π×2×h=12π,解得h=3,
2
∴几何体的体积V=π×2×3=12π.
故选B.
【点评】本题考查了圆柱的三视图,结构特征,体积,表面积计算,属于基础题.
第 9 页,共 15 页
精选高中模拟试卷
11.【答案】C 【解析】
2试题分析:因为三个数a1,a1,a5等比数列,所以a1a1a5,a3,倒数重新排列后恰
11111,,好为递增的等比数列{an}的前三项,为,公比为,数列是以为首项,为公比的等比数列,则8422an不等式a1a2an11a1a211n811212n8,整理,得等价为1an12122n27,1n7,nN,故选C. 1
考点:1、等比数列的性质;2、等比数列前项和公式. 12.【答案】B 【解析】【解析1】
,
所以【解析2】
,
二、填空题
13.【答案】 7.5
【解析】解:∵由表格可知=9, =4, ∴这组数据的样本中心点是(9,4), 根据样本中心点在线性回归直线∴4=0.7×9+∴
,
=0.7x+
上,
=﹣2.3,
=0.7x﹣2.3,
∴这组数据对应的线性回归方程是∵x=14, ∴
=7.5,
故答案为:7.5
第 10 页,共 15 页
精选高中模拟试卷
【点评】本题考查线性回归方程,考查样本中心点,做本题时要注意本题把利用最小二乘法来求线性回归方程的系数的过程省掉,只要求a的值,这样使得题目简化,注意运算不要出错.
14.【答案】fx2x24x5 【解析】
试题分析:由题意得,令tx1,则xt1,则ft2(t1)28(t1)112t24t5,所以函数fx的解析式为fx2x24x5. 考点:函数的解析式. 15.【答案】 90° . 【解析】解:∵∴∴
=
∴α与β所成角的大小为90° 故答案为90°
【点评】本题用向量模的平方等于向量的平方来去掉绝对值.
16.【答案】②③ 【解析】
试题分析:①错:A(1,1),B(2,5),|AB|17,|kAkB|7,(A,B)②对:如y1;③对;(A,B)④错;(A,B)|2xA2xB|(xAxB)(xx)x2222A22B273;17
21(xAxB)2;
|ex1ex2|(x1x2)(ee)2x1|ex1ex2|1(ee)x1x22,
1(ex1ex2)211111,因为恒成立,故t1.故答案为②③.111] tx1x2x1x22(A,B)|ee|(ee)(A,B)考点:1、利用导数求曲线的切线斜率;2、两点间的距离公式、最值问题、不等式恒成立问题.
【方法点晴】本题通过新定义“弯曲度”对多个命题真假的判断考查利用导数求曲线的切线斜率、两点间的距离公式、最值问题、不等式恒成立问题以及及数学化归思想,属于难题.该题型往往出现在在填空题最后两题,综合性较强,同学们往往因为某一点知识掌握不牢就导致本题“全盘皆输”,解答这类问题首先不能慌乱更不能因贪快而审题不清,其次先从最有把握的命题入手,最后集中力量攻坚最不好理解的命题. 17.【答案】 m≥2 .
第 11 页,共 15 页
精选高中模拟试卷
【解析】解:集合A={x|x+m≥0}={x|x≥﹣m},全集U=R,所以CUA={x|x<﹣m}, 又B={x|﹣2<x<4},且(∁UA)∩B=∅,所以有﹣m≤﹣2,所以m≥2.
故答案为m≥2.
18.【答案】 9 .
【解析】解:平均气温低于22.5℃的频率,即最左边两个矩形面积之和为0.10×1+0.12×1=0.22, 所以总城市数为11÷0.22=50,
平均气温不低于25.5℃的频率即为最右面矩形面积为0.18×1=0.18, 所以平均气温不低于25.5℃的城市个数为50×0.18=9. 故答案为:9
三、解答题
19.【答案】
=
.
=.
=
=
【解析】(1)证明:∵AB∥C1D1,AB=C1D1, ∴四边形ABC1D1是平行四边形, ∴BC1∥AD1,
又∵AD1⊂平面ACD1,BC1⊄平面ACD1, ∴BC1∥平面ACD1. (2)解:S△ACE=AEAD=∴V
=V
【点评】本题考查了线面平行的判定,长方体的结构特征,棱锥的体积计算,属于中档题.
20.【答案】
22【解析】解:(Ⅰ)由正弦定理得,sinAsinB+sinBcosA=22
即sinB(sinA+cosA)=
sinA,
sinA
a2,得cosB=
2)a,
∴sinB=sinA, =
22
(Ⅱ)由余弦定理和C=b+222
由(Ⅰ)知b=2a,故c=(2+
2
可得cosB=,又cosB>0,故cosB=
所以B=45°
第 12 页,共 15 页
精选高中模拟试卷
【点评】本题主要考查了正弦定理和余弦定理的应用.解题的过程主要是利用了正弦定理和余弦定理对边角问题进行了互化.
21.【答案】 【解析】解:(1)由A=[0,3],
x
由B={y|y=2,1≤x≤2}=[2,4],
,解得0≤x≤3
(2))∁UA=(﹣∞,0)∪[3,+∞),
∴(∁UA)∩B=(3,4]
22.【答案】
2x2
【解析】解:(1)令f(x)=0,得(x+mx+m)e=0,所以x+mx+m=0. 因为函数f(x)没有零点,所以△=m﹣4m<0,所以0<m<4.
2
x2xx
(2)f'(x)=(2x+m)e+(x+mx+m)e=(x+2)(x+m)e,
令f'(x)=0,得x=﹣2,或x=﹣m, 当m>2时,﹣m<﹣2.列出下表: x
(﹣∞,﹣m) ﹣m (﹣m,﹣2) ﹣2
0
﹣
0 ↘
me﹣m
f'(x) + f(x) ↗
(﹣2,+∞) +
2
(4﹣m)e﹣ ↗
m
当x=﹣m时,f(x)取得极大值me﹣.
2x
当m=2时,f'(x)=(x+2)e≥0,f(x)在R上为增函数,
所以f(x)无极大值.
当m<2时,﹣m>﹣2.列出下表:
x (﹣∞,﹣2) ﹣2 (﹣2,﹣m) ﹣m (﹣m,+∞) f'(x) + f(x) ↗
0
﹣
2
0 ↘
+ me﹣m
↗
2
(4﹣m)e﹣
当x=﹣2时,f(x)取得极大值(4﹣m)e﹣, 所以
2xxx
(3)当m=0时,f(x)=xe,令ϕ(x)=e﹣1﹣x,则ϕ'(x)=e﹣1,
当x>0时,φ'(x)>0,φ(x)为增函数;当x<0时,φ'(x)<0,φ(x)为减函数, 所以当x=0时,φ(x)取得最小值0.
第 13 页,共 15 页
精选高中模拟试卷
xx
所以φ(x)≥φ(0)=0,e﹣1﹣x≥0,所以e≥1+x, 2x2323
因此xe≥x+x,即f(x)≥x+x.
【点评】本题考查的知识点是利用导数研究函数的单调性,利用函数研究函数的极值,其中根据已知函数的解析式,求出函数的导函数是解答此类问题的关键.
23.【答案】
【解析】解:设圆锥的母线长为l,底面半径为r,高为h, 由已知条件解得
,
,
, ,
2
∴S=πrl+πr=10π,
∴
24.【答案】(1)详见解析;(2)详见解析. 【解析】
试题分析:(1)根据线面平行的判定定理,可先证明PQ与平面内的直线平行,则线面平行,所以取SD中点F,连结AF,PF,可证明PQ//AF,那就满足了线面平行的判定定理了;(2)要证明面面垂直,可先证明线面垂直,根据所给的条件证明AC平面SEQ,即平面SAC平面SEQ. 试题解析:证明:(1)取SD中点F,连结AF,PF. ∵P、F分别是棱SC、SD的中点,∴FP//CD,且FP∵在菱形ABCD中,Q是AB的中点,
1CD. 21CD,即FP//AQ且FPAQ. 2∴AQPF为平行四边形,则PQ//AF.
∵PQ平面SAD,AF平面SAD,∴PQ//平面SAD.
∴AQ//CD,且AQ
第 14 页,共 15 页
精选高中模拟试卷
考点:1.线线,线面平行关系;2.线线,线面,面面垂直关系.
【易错点睛】本题考查了立体几何中的线与面的关系,属于基础题型,重点说说垂直关系,当证明线线垂直时,一般要转化为线面垂直,证明线与面垂直时,即证明线与平面内的两条相交直线垂直,证明面面垂直时,转化为证明线面垂直,所以线与线的证明是基础,这里经常会搞错两个问题,一是,线与平面内的两条相交直线垂直,线与平面垂直,很多同学会记成一条,二是,面面垂直时,平面内的线与交线垂直,才与平面垂直,很多同学会理解为两个平面垂直,平面内的线都与另一个平面垂直, 需熟练掌握判定定理以及性质定理.
第 15 页,共 15 页
因篇幅问题不能全部显示,请点此查看更多更全内容