您的当前位置:首页正文

十字相乘法教学反思(陈登群)

2021-04-26 来源:意榕旅游网


十字相乘法教学反思

初二数学组:陈登群

学生对整式乘法是熟悉的,是学生的原有认知!因此对十字相乘法的教学,我觉得还是从学生的原有知识出发,逆向使用式子。因式分解与整式的乘法实际上是互逆的两个运算过程。因式分解的方法都是逆向使用整式乘法的结果。这样处理既符合学生的认知规律,又符合建构主义的相关理论。还有一个好处就是,可以为将来学习分组分解法进行铺垫,学生可以通过借鉴本节课的学习过程发现新的因式分解的方法——逆向使用公式 在介绍十字相乘法时,先从二次三项式一般式引入,使学生分清二次项系数、一次项系数、常数项,再进行十字相乘。在对系数的处理上,学生搭配较简单的数时很快,但对系数较大的十字分解还缺乏经验。所以介绍了对常数项进行因式分解,再合理尝试十字交叉相乘。学生经过理解后,且在经过多个方程的十字相乘后,积累了一定的经验,对符号的处理上能找到巧妙方法,通过先考虑合系数的绝对值,再确定符号所处位置。最后出现的问题在交叉相乘以后对分解式的书写,正确的应是横向书写,所以要多强调、多指导、多个别指出学生的错误。为此特意编了口诀:(1).因式分解竖直写;(2).交叉相乘验中项;(3).横向写出两因式。 十字相乘法是因式分解中非常重要的方法,也为后续分式的计算奠定基础的重要环节。这节课的我就以二次项系数为1的二次三项式的因式分解为目标,从因式分解的意义入手,对公式(x+p)(x+q)=x2+(p+q)x+pq进行观察研究,发现反过来就是x2+(p+q)x+pq=(x+p)(x+q),适用于因式分解,从而,对于二次三项式x2+mx+n的因式分解,关键就是找两个数p、q使:p+q=m,pq=n,由学生思考后,提出从积入手找两个数,因此,新的方法就可以理解掌握了,借助十字相乘的特殊书写方法,便于操作演算,要教育学生学会不断尝试,不怕受挫,不断动脑,增强对数的洞察能力。

因篇幅问题不能全部显示,请点此查看更多更全内容