您的当前位置:首页正文

(完整版)液压传动课程设计-液压系统设计举例

2023-02-07 来源:意榕旅游网
液压系统设计计算举例

液压系统设计计算是液压传动课程设计的主要内容,包括明确设计要求进行工况分析、确定液压系统主要参数、拟定液压系统原理图、计算和选择液压件以及验算液压系统性能等。现以一台卧式单面多轴钻孔组合机床动力滑台液压系统为例,介绍液压系统的设计计算方法。

1 设计要求及工况分析

1.1设计要求

要求设计的动力滑台实现的工作循环是:快进  工进  快退  停止。主要性能参数与性能要求如下:切削阻力FL=30468N;运动部件所受重力G=9800N;快进、快退速度1= 3=0.1m/s,工进速度2=0.88×10-3m/s;快进行程L1=100mm,工进行程L2=50mm;往复运动的加速时间Δt=0.2s;动力滑台采用平导轨,静摩擦系数μs=0.2,动摩擦系数μd=0.1。液压系统执行元件选为液压缸。

1.2负载与运动分析

(1) 工作负载 工作负载即为切削阻力FL=30468N。 (2) 摩擦负载 摩擦负载即为导轨的摩擦阻力: 静摩擦阻力 FfssG0.298001960N 动摩擦阻力 FfddG0.19800980N (3) 惯性负载

Fi(4) 运动时间

G98000.1N500Ngt9.80.2

100103t1s1s0.11快进

L150103t2s56.8s320.8810工进

L2t3快退

L1L23(10050)103s1.5s0.1

设液压缸的机械效率ηcm=0.9,得出液压缸在各工作阶段的负载和推力,如表1所列。

表1液压缸各阶段的负载和推力

工况 启 动 加 速 快 进 工 进 反向启动 加 速 快 退 负载组成 液压缸负载F/N 1960 1480 980 31448 1960 1480 980 FFfs FFfdFi FFfd FFfdFL FFfs FFfdFi FFfd 液压缸推力F0=F/ηcm/N 2180 1650 1090 34942 2180 1650 1090

根据液压缸在上述各阶段内的负载和运动时间,即可绘制出负载循环图F-t 和速度循环图-t,如图1所示。

2 确定液压系统主要参数

2.1初选液压缸工作压力

所设计的动力滑台在工进时负载最大,在其它工况负载都不太高,参考表2和表3,初选液压缸的工作压力p1=4MPa。

2.2计算液压缸主要尺寸

鉴于动力滑台快进和快退速度相等,这里的液压缸可选用单活塞杆式差动液压缸(A1=2A2),快进时液压缸差动连接。工进时为防止孔钻通时负载突然消失发生前冲现象,液压缸的回油腔应有背压,参考表4选此背压为p2=0.6MPa。

表2 按负载选择工作压力

负载/ KN 工作压力/MPa <5 <0.8~1 5~10 1.5~2 10~20 2.5~3 20~30 3~4 30~50 4~5 >50 ≥5 图1 F-t与-t图

表3 各种机械常用的系统工作压力

机 床 机械类型 磨床 组合机床 龙门刨床 拉床 农业机械 小型工程机械 建筑机械 液压凿岩机 工作压力/MPa 0.8~2 3~5 2~8 8~10 10~18 液压机 大中型挖掘机 重型机械 起重运输机械 20~32

表4 执行元件背压力

系统类型 简单系统或轻载节流调速系统 回油路带调速阀的系统 回油路设置有背压阀的系统 用补油泵的闭式回路 回油路较复杂的工程机械 回油路较短且直接回油 背压力/MPa 0.2~0.5 0.4~0.6 0.5~1.5 0.8~1.5 1.2~3 可忽略不计

表5 按工作压力选取d/D

工作压力/MPa d/D ≤5.0 0.5~0.55 5.0~7.0 0.62~0.70 ≥7.0 0.7

表6 按速比要求确定d/D

2/1 d/D 注:

1.15 0.3 1.25 0.4 1.33 0.5 1.46 0.55 1.61 0.62 2 0.71 1—无杆腔进油时活塞运动速度; 2—有杆腔进油时活塞运动速度。

p1A1p2A2F 由式 得

cm31448m294104m20.60.9(4)1062

A1Fcm(p1Dp2)24A1则活塞直径

494104m0.109m109mm

参考表5及表6,得d0.71D =77mm,圆整后取标准数值得 D=110mm, d=80mm。

由此求得液压缸两腔的实际有效面积为

A1A2D240.1124m295104m2

4

根据计算出的液压缸的尺寸,可估算出液压缸在工作循环中各阶段的压力、流量和功率,如表7所列,由此绘制的液压缸工况图如图2所示。

(D2d2)4(0.1120.82)m244.7104m2表7液压缸在各阶段的压力、流量和功率值

工况 推力 F0/N 回油腔压力 p2/MPa 启动 快进 加速 恒速 1090 p1+Δp 0.66 0.5 0.33 1650 p1+Δp 0.77 — — 2180 — 进油腔压力 p1/MPa 0.43 — 输入流量 q×10-3/m3/s 输入功率 P/KW — 计算公式 p1F0A2PA1A2 q(A1A2)1Pp1q p1工进 34942 0.6 3.96 0.84×10-2 0.033 F0p2A2A1 qA12 Pp1q F0p2A1A2启动 快退 加速 恒速 2180 — 0.49 — — p1 1650 0.5 1.43 — — qA23 1090 0.5 1.31 0.45 0.59 Pp1q 注:1. Δp为液压缸差动连接时,回油口到进油口之间的压力损失,取Δp=0.5MPa。

2. 快退时,液压缸有杆腔进油,压力为p1,无杆腔回油,压力为p2。

3 拟定液压系统原理图

3.1选择基本回路

(1) 选择调速回路 由图2可知,这台机床液压系统功率较小,滑台运动速度低,工作负载为阻力负载且工作中变化小,故可选用进口节流调速回路。为防止孔钻通时负载突然消失引起运动部件前冲,在回油路上加背压阀。由于系统选用节流调速方式,系统必然为开式循环系统。

(2) 选择油源形式 从工况图可以清楚看出,在工作循环内,液压缸要求油源提供快进、快退行程的低压大流量和工进行程的高压小流量的油液。最大流量与最小流量之比qmax/qmin=0.5/(0.84×10-2)60;其相应的时间之比图2 液压缸工况图

(t1+t3)/t2=(1+1.5)/56.8=0.044。这表明在一个工作循

环中的大部分时间都处于高压小流量工作。从提高系统效率、节省能量角度来看,选用单定量泵油源显然是不合理的,为此可选用限压式变量泵或双联叶片泵作为油源。考虑到前者流量突变时液压冲击较大,工作平稳性差,且后者可双泵同时向液压缸供油实现快速运动,最后确定选用双联叶片泵方案,如图2a所示。

(3) 选择快速运动和换向回路 本系统已选定液压缸差动连接和双泵供油两种快速运动回路实现快速运动。考虑到从工进转快退时回油路流量较大,故选用换向时间可调的电液换向阀式换向回路,以减小液压冲击。由于要实现液压缸差动连接,所以选用三位五通电液换向阀,如图2b所示。

(4) 选择速度换接回路 由于本系统滑台由快进转为工进时,速度变化大(1/2=0.1/(0.88×10-3)114),为减少速度换接时的液压冲击,选用行程阀控制的换接回路,如图2c所示。

(5) 选择调压和卸荷回路 在双泵供油的油源形式确定后,调压和卸荷问题都已基本解决。即滑台工进时,高压小流量泵的出口压力由油源中的溢流阀调定,无需另设调压回路。在滑台工进和停止时,低压大流量泵通过液控顺序阀卸荷,高压小流量泵在滑台停止时虽未卸荷,但功率损失较小,故可不需再设卸荷回路。

图2 选择的基本回路

3.2组成液压系统

将上面选出的液压基本回路组合在一起,并经修改和完善,就可得到完整的液压系统工作原理图,如图3所示。在图3中,为了解决滑台工进时进、回油路串通使系统压力无法建立的问题,增设了单向阀6。为了避免机床停止工作时回路中的油液流回油箱,导致空气进入系统,影响滑台运动的平稳性,图中添置了一个单向阀13。考虑到这台机床用于钻孔(通孔与不通孔)加工,对位置定位精度要求较高,图中增设了一个压力继电器14。当滑台碰上死挡块后,系统压力升高,它发出快退信号,操纵电液换向阀换向。

4 计算和选择液压件

图3 整理后的液压系统原理图

4.1确定液压泵的规格和电动机功率

(1) 计算液压泵的最大工作压力

小流量泵在快进和工进时都向液压缸供油,由表7可知,液压缸在工进时工作压力最大,最大工作压力为p1=3.96MPa,如在调速阀进口节流调速回路中,选取进油路上的总压力损失∑∆p=0.6MPa,考虑到压力继电器的可靠动作要求压差pe=0.5MPa,则小流量泵的最高工作压力估算为

pp1p1ppe3.960.60.5MPa5.06MPa

大流量泵只在快进和快退时向液压缸供油,由表7可见,快退时液压缸的工作压力为p1=1.43MPa,比快进时大。考虑到快退时进油不通过调速阀,故其进油路压力损失比前者小,现取进油路上的总压力损失∑∆p=0.3MPa,则大流量泵的最高工作压力估算为

pp2p1p1.430.3MPa1.73MPa

(2) 计算液压泵的流量 由表7可知,油源向液压缸输入的最大流量为0.5×10-3 m3/s ,若取回路泄漏系数K=1.1,则两个泵的总流量为

qpKq11.10.5103m3/s0.55103m3/s33L/min

考虑到溢流阀的最小稳定流量为3L/min,工进时的流量为0.84×10-5 m3/s =0.5L/min,则小流量泵的流量最少应为3.5L/min。

(3) 确定液压泵的规格和电动机功率

根据以上压力和流量数值查阅产品样本,并考虑液压泵存在容积损失,最后确定选取PV2R12-6/33型双联叶片泵。其小流量泵和大流量泵的排量分别为6mL/r和33mL/r,当液压泵的转速np=940r/min时,其理论流量分别为5.6 L/min和31L/min,若取液压泵容积效率ηv=0.9,则液压泵的实际输出流量为

qpqp1qp269400.9/1000339400.9/1000L/min

由于液压缸在快退时输入功率最大,若取液压泵总效率ηp=0.8,这时液压泵的驱动电动机功率为

5.127.9L/min33L/minPppqpp1.7310633103KW1.19KW600.8103

根据此数值查阅产品样本,选用规格相近的Y100L—6型电动机,其额定功率为1.5KW,额定转速为940r/min。

4.2确定其它元件及辅件

(1) 确定阀类元件及辅件

根据系统的最高工作压力和通过各阀类元件及辅件的实际流量,查阅产品样本,选出的阀类元件和辅件规格如表8所列。其中,溢流阀9按小流量泵的额定流量选取,调速阀4选用Q—6B型,其最小稳定流量为0.03 L/min,小于本系统工进时的流量0.5L/min。

表8液压元件规格及型号

通过的最大流量q/L/min — 70 62.3 规格 型号 额定流量qn/L/min PV2R12-6/33 35DY—100BY 22C—100BH 100 6.3 0.3 5.1/27.9* 100 额定压力Pn/MPa 16 6.3 额定压降序号 元件名称 ∆Pn/MPa — 0.3 1 2 3 双联叶片泵 三位五通电液换向阀 行程阀 4 5 6 7 8 9 10 11 12 13 14 调速阀 单向阀 单向阀 液控顺序阀 背压阀 溢流阀 单向阀 滤油器 压力表开关 单向阀 压力继电器 <1 70 29.3 28.1 <1 5.1 27.9 36.6 — 70 — Q—6B I—100B I—100B XY—63B B—10B Y—10B I—100B XU—80×200 K—6B I—100B PF—B8L 6 100 100 63 10 10 100 80 — 100 — 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 — 6.3 14 — 0.2 0.2 0.3 — — 0.2 0.02 — 0.2 — *注:此为电动机额定转速为940r/min时的流量。

(2) 确定油管

在选定了液压泵后,液压缸在实际快进、工进和快退运动阶段的运动速度、时间以及进入和流出液压缸的流量,与原定数值不同,重新计算的结果如表9所列。 表9各工况实际运动速度、时间和流量

快进 工进 快退 q1A1(qp1qp2)A1A2q10.5L/minq1qp1qp2(5.127.9)L/min33L/min 95(5.127.9)L/min9544.762.3L/min q2q1A2A1q2q1A2A1q2q1A2A144.7L/min9529.3L/min 62.344.7L/min950.24L/min 0.52q1A195L/min44.770L/min 333q1A21qp1qp2A1A2(5.127.9)103m/s60(9544.7)1040.109m/s 100103t1s0.1090.92s

表10允许流速推荐值

管道 0.5103m/s46095100.88103m/s 50103t2s0.8810356.8s 33103m/s6044.71040.123m/s 150103t3s0.1231.22s 推荐流速/(m/s) 吸油管道 压油管道 回油管道 0. 5~1.5,一般取1以下 3~6,压力高,管道短,粘度小取大值 1. 5~3

由表9可以看出,液压缸在各阶段的实际运动速度符合设计要求。

根据表9数值,按表10推荐的管道内允许速度取=4 m/s,由式压缸无杆腔和有杆腔相连的油管内径分别为

d4q计算得与液

462.3103d103mm18.2mm603.144

4q470103d103mm19.3mm603.144

4q为了统一规格,按产品样本选取所有管子均为内径20mm、外径28mm的10号冷拔钢

管。

(3) 确定油箱

油箱的容量按式

Vqpn估算,其中α为经验系数,低压系统,α=2~4;中压系统,α=5~

7;高压系统,α=6~12。现取α=6,得

Vqpn6(5.631)L220L

5 验算液压系统性能

5.1验算系统压力损失

由于系统管路布置尚未确定,所以只能估算系统压力损失。估算时,首先确定管道内液

体的流动状态,然后计算各种工况下总的压力损失。现取进、回油管道长为l=2m,油液的运动粘度取=110-4m2/s,油液的密度取=0.9174103kg/m3。

(1) 判断流动状态

在快进、工进和快退三种工况下,进、回油管路中所通过的流量以快退时回油流量q2=70L/min为最大,此时,油液流动的雷诺数

d4q470103Re743d60201031104

也为最大。因为最大的雷诺数小于临界雷诺数(2000),故可推出:各工况下的进、回油路

中的油液的流动状态全为层流。

(2) 计算系统压力损失

将层流流动状态沿程阻力系数

和油液在管道内流速

7575dRe4q

4qd2

l2pld2,并将已知数据代入后,得 同时代入沿程压力损失计算公式

475l4750.9174103110428p1qq0.547810q4342d23.14(2010)

可见,沿程压力损失的大小与流量成正比,这是由层流流动所决定的。

在管道结构尚未确定的情况下,管道的局部压力损失∆pζ常按下式作经验计算

pζ0.1pl

2各工况下的阀类元件的局部压力损失可根据下式计算

qpvpnqn

其中的pn由产品样本查出,qn和q数值由表8和表9列出。滑台在快进、工进和快退工况下的压力损失计算如下:

1.快进

滑台快进时,液压缸通过电液换向阀差动连接。在进油路上,油液通过单向阀10、电液换向阀2,然后与液压缸有杆腔的回油汇合通过行程阀3进入无杆腔。在进油路上,压力损失分别为

62.3103pli0.547810q0.54781060106MPa0.05688MPa

88p0.1pζili0.10.05688MPa0.005688MPa

22227.93362.30.30.3MPa0.1647MPapvi0.2100100100

ppppiliζivi0.056880.0056880.1647MPa0.2273MPa

在回油路上,压力损失分别为

29.3103plo0.547810q0.54781060106MPa0.02675MPa88pζo0.1plo0.10.02675MPa0.002675MPa

22229.329.362.30.20.3MPa0.1594MPapvo0.3100100100

pppoloζopvo0.026750.0026750.1594MPa0.1888MPa

将回油路上的压力损失折算到进油路上去,便得出差动快速运动时的总的压力损失

44.7p0.22730.1888MPa0.316MPa95

2.工进

滑台工进时,在进油路上,油液通过电液换向阀2、调速阀4进入液压缸无杆腔,在调速阀4处的压力损失为0.5MPa。在回油路上,油液通过电液换向阀2、背压阀8和大流量泵的卸荷油液一起经液控顺序阀7返回油箱,在背压阀8处的压力损失为0.6MPa。若忽略管路的沿程压力损失和局部压力损失,则在进油路上总的压力损失为

20.50.5MPa0.5MPapipvi0.3100

此值略小于估计值。

在回油路上总的压力损失为

220.240.2427.90.60.3MPa0.66MPapopvo0.310063

该值即为液压缸的回油腔压力p2=0.66MPa,可见此值与初算时参考表4选取的背压值基本

相符。

按表7的公式重新计算液压缸的工作压力为

F0p2A2349420.6610644.7104p1MPa3.99MPa46A1951010

此略高于表7数值。

考虑到压力继电器的可靠动作要求压差pe=0.5MPa,则小流量泵的工作压力为

pp1p1pipe3.990.50.54.99MPa

此值与估算值基本相符,是调整溢流阀10的调整压力的主要参考数据。

3.快退

滑台快退时,在进油路上,油液通过单向阀10、电液换向阀2进入液压缸有杆腔。在回油路上,油液通过单向阀5、电液换向阀2和单向阀13返回油箱。在进油路上总的压力损失为

2227.9330.3MPa0.048MPapipvi0.2100100

此值远小于估计值,因此液压泵的驱动电动机的功率是足够的。

在回油路上总的压力损失为

2227070700.30.2MPa0.343MPapopvo0.2100100100

此值与表7的数值基本相符,故不必重算。

大流量泵的工作压力为

pp2p1pi1.430.0481.48MPa

此值是调整液控顺序阀7的调整压力的主要参考数据。

5.2验算系统发热与温升

由于工进在整个工作循环中占96%,所以系统的发热与温升可按工进工况来计算。在工进时,大流量泵经液控顺序阀7卸荷,其出口压力即为油液通过液控顺序阀的压力损失

q27.9pp2ppn0.3MPa0.0588MPaq63n

液压系统的总输入功率即为液压泵的输入功率

22Prpp1qp1pp2qp2p65.110327.910364.99100.0588106060W564.4W0.8

液压系统输出的有效功率即为液压缸输出的有效功率

PcF2314480.88103W27.7W

由此可计算出系统的发热功率为

HPrPc564.427.7W536.7W

按式

THKA计算工进时系统中的油液温升,即

0.065K3V20.0651532202

其中传热系数K=15 W/(m2·C)。

V: 油箱体积,当油箱的3个边长之比在1:1:1 ~ 1:2:3范围内,且油位高占油箱高80%时,其散热面积 A0.0653V2

设环境温T2=25C,则热平衡温度为

 T 

H536.715C

T1T2T2515T155C

油温在允许范围内,油箱散热面积符合要求,不必设置冷却器。

因篇幅问题不能全部显示,请点此查看更多更全内容