教学目标:
1、通过练习,使学生进一步提高用数对确定位置的能力。
2、通过练习,进一步提高学生抽象思维能力,发展学生的空间观念,体验数学与生活的联系。
教学过程:
一、基础练习
下面是某一地区的平面图。
1、用数对标出环球大厦和购物中心的位置。
2、图中(11,4)表示的位置是。
3、和在同一行上。
4、小明从公园门口出来,到书店该怎样走?
(1)独立完成解答。
(2)集体评讲。
二、提高练习
1、练习三第5题。
(1)理解题意,明白“行”“列”表示的意思。
(2)根据(x,5)这个数对,说说x表示的是列数还是行数?
根据这个数对能确定什么?它表示的可能是哪个班?
(3)在小组中说说第(3)小题。
这里的x,y可能表示哪些数?为什么?
2、完成练习三第6题。
(1)理解题意,明确鲜花和绿色植物都应放在方格线的交点上。
(2)在小组中设计交流。
(3)展示作业,汇报结果。
你能用数对描述一下自己设计的摆放位置吗?
你觉得自己设计的如何?优点是什么?
互相评价:设计是否合理?是否美观?
3、完成练习三第7题。
平移后顶点位置的数对什么变化乐,什么没变?(第一个数变了,第二个数没变)
第一个怎么变化的?
独立在书上方格中完成第(3)小题。
在小组中完成第(4)小题。
说说顺次连接四个点得到了什么图形?
4、完成练习三第8题。
理解题意,简单介绍国际象棋的棋盘。
棋盘上的列车行分别用什么表示?
用g2表示白王,和数对表示的方法相同吗?
完成第(2)小题的填空。
在小组中互相说说黑车从C6~C2,是怎样前进的?
三、阅读“你知道吗”
四、课堂总结
用数对确定位置在生活中有着广泛的应用,同学们说说在哪些领域会用到这个知识呢?学好这个知识对于大家今后的学习、生活都有重要的作用。
第三单元公倍数和公因数
第一课时:公倍数和最小公倍数
教学内容:教科书第22-23页的例1、例2和“练一练”,练习四的第1-4题。
教学目标:
1、使学生在具体的操作活动中,认识公倍数和最小公倍数,会在集合图中分别表示两个数的倍数和它们的公倍数。
2、使学生学会用列举的方法找到10以内两个数的公倍数和最小公倍数,并能在解决问题的过程中主动探索简捷的方法,进行有条理的思考。
3、使学生在自主探索与合作交流的过程中,进一步发展与同伴进行合作交流的意识和能力,获得成功的体验。
教学准备:
长3厘米、宽2厘米的长方形纸片,边长6厘米、8厘米的正方形纸片;练习四第4题里的方格图、红旗和黄旗。
教学过程:
一、经历操作活动,认识公倍数
1、操作活动。
提问:用长3厘米、宽2厘米的长方形纸片分别铺边长6厘米、8厘米的正方形,能铺满哪个正方形?拿出手中的图形,动手拼一拼。
学生独立活动后指名在实物展示台上铺一铺。
提问:通过刚才的活动,你们发现了什么?
引导:⑴用长3厘米、宽2厘米的长方形纸片铺边长6厘米的正方形,每条边各铺了几次?怎样用算式表示?
⑵铺边长8厘米的正方形呢?每条边都能正好铺满吗?
2、想像延伸。
提问:根据刚才铺正方形的过程,在头脑里想一想,用3厘米、宽2厘米的长方形纸片正好铺满边长多少厘米的正方形?在小组里交流。
3、揭示概念。
讲述:6、12、18、24……既是2的倍数,又是3的倍数,它们是2和3的公倍数。
说明:因为一个数的倍数的个数是无限的,所以两个数的公倍数的个数也是无限的,同样可以用省略号表示。
引导:用3厘米、宽2厘米的长方形纸片不能正好铺满边长8厘米的正方形,说明什么?为什么?
二、自主探索,用列举的方法求公倍数和最小公倍数
1、自主探索。
提问:6和9的公倍数有哪些?其中最小的公倍数是几?你能试着找一找吗?
学生自主活动,在小组里交流。可能的方法有:
①依次分别写出6和9的公倍数,再找一找。
提问:你是怎样找到6和9的公倍数的?又是怎样确定6和9的最小公倍数的?
②先找出6的倍数,再从6的倍数中找出9的倍数。
③先找出9的倍数,再从9的倍数中找出6的倍数。
引导:②和③有什么相同的地方?哪一种方法简捷些?
2、明确6和9的公倍数中最小的一个是18,指出:18就是6和9的最小公倍数。
3、用集合图表示。
指导学生填集合图后,引导:12是6和9的公倍数吗?为什么?27呢?哪几个数是6和9的公倍数?
4、完成“练一练”
完成后交流:2和5的公倍数有什么特点?
三、巩固练习,加深对公倍数和最小公倍数的认识
1、练习四第1题。
提问:这里在图中要写省略号吗?为什么?如果没有“50以内”这个前提呢?
2、练习四第2题。
引导:4与一个数的乘积都是4的什么数?5、6与一个数的乘积呢?怎样找到4和5的公倍数?填空时为什么要写省略号?
3、练习四第3题。
集体交流时说说是怎样找的。
四、全课小结
因篇幅问题不能全部显示,请点此查看更多更全内容