您的当前位置:首页正文

《中位线》教案

2023-05-15 来源:意榕旅游网

  【学习目标】

  1. 知识技能

  利用平行四边形的性质和判定证明出三角形的中位线定理,并会用定理进行计算或证明.

  2.数学思考

  通过猜想、验证、推理、交流等数学活动,发展我们的动手操作能力、合情推理能力以及应用数学能力.

  3.解决问题

  通过三角形中位线定理的探索过程,丰富我们从事数学活动的经验与体验,感受数学思考过程的条理性及解决问题策略的多样性.

  4.情感态度

  (1)在观察、分析过程中发展我们主动探索、质疑和独立思考的习惯.

  (2)经历合作探究的过程,培养我们合作交流意识和探索精神.

  【学习重难点】

  1.教学重点:理解和掌握三角形中位线定理,并能熟练运用.

  2.教学难点:利用平行四边形的性质与判定证明三角形的中位线定理,以及复杂图形中通过作辅助线应用三角形中位线定理.

  课前延伸

  各人准备一张三角形纸片,记作△ABC,分别取AB、AC边中点D、E,用直尺分别测量DE、BC的长,比较DE、BC的大小关系,并猜想DE、BC之间存在怎样的数量关系.还能借助量角器测量有关角的大小,并猜想出DE、BC之间的位置关系吗?

  课内探究

  一.上面猜想进行理论证明.

  已知:D、E分别平分AB、AC,

  求证:_______________________

  二.总结归纳.

  三角形的中位线定义:

  三角形的中位线定理:

  三.三角形的中位线和中线区别:

  三角形中位线定理的符号语言:

  四.随堂练习、巩固深化

  1.D、E分别平分AB、AC,若BC=10cm,则DE=______;

  若DE= cm,则BC=______.

  2.已知 中, ,且 cm,D、E、F分别是AB、BC、CA的中点,则 的周长是_________cm.

  3.如图, 内有一点P,EF是 的中位线,MN是 的中位线,

  求证:四边形MNFE是平行四边形.

  4.判断任意一个四边形各边中点连接所形成四边形的形状,并证明你的结论.

  已知:E、F、G、H分别为四边形ABCD中点,

  求证:四边形EFGH为平行四边形.

  5.实际应用:

  想知道一池塘边缘宽度AB,且AB不可直接测量,怎么办?

  提醒:池塘旁取一点C,C与A、B之间可以直接到达.

  五.当场训练反馈:

  1.如图,任意四边形ABCD各边中点分别为E、F、G、H,若对角线AC、BD的长都为10 cm,则四边形EFGH的周长是( )

  A.40cm B.20cm C.10cm D.5cm

  2.以三角形的三个顶点及三边中点为顶点的平行四边形共有( )

  A.1个 B.2个 C.3个 D.4个

  课后提升

  1.已知一个三角形的周长为a,它的三条中线组成的第二个三角形周长为_________,

  第二个三角形的三条中线又组成第三个三角形,其周长为_________,以此类推,

  第20__个三角形的周长为_________.

  2.如图,已知△ABC的中线BD、CE相交于点O,F、G分别是BO、CO的中点,

  试猜想EF、DG之间的关系,并证明你的结论.

因篇幅问题不能全部显示,请点此查看更多更全内容