您的当前位置:首页正文

ECG信号自动诊断中回归建模法特征提取的研究

来源:意榕旅游网
Vol.33,No.5ACTAAUTOMATICASINICAMay,2007

StudyofFeatureExtractionBasedonAutoregressive

ModelinginECGAutomaticDiagnosis

GEDing-Fei1

HOUBei-Ping1

XIANGXin-Jian1

AbstractThisarticleexplorestheabilityofmultivariateautoregressivemodel(MAR)andscalarARmodeltoextractthefeaturesfromtwo-leadelectrocardiogramsignalsinordertoclassifycertaincardiacarrhythmias.TheclassificationperformanceoffourdifferentECGfeaturesetsbasedonthemodelcoefficientsareshown.Thedataintheanalysisincludingnormalsinusrhythm,atriaprematurecontraction,prematureventricularcontraction,ventriculartachycardia,ventricularfibrillationandsuperventriculartachycardiaisobtainedfromtheMIT-BIHdatabase.Theclassificationisperformedusingaquadraticdiscriminantfunction.TheresultsshowtheMARcoefficientsproducethebestresultsamongthefourECGrepresentationsandtheMARmodelingisausefulclassificationanddiagnosistool.

KeywordsAutoregressivemodel,ECGfeatures,classification,automaticdiagnosis.

1Introduction

Oneofthemostimportanttasksisthereliabledetec-tionandclassificationofthearrhythmiasforautomaticmonitoringanddiagnosis.Amongthosethreateningar-rhythmias,ventriculartachycardia(VT)andventricularfibrillation(VF)aremostdangerousbecausetheyproducethehaemodynamicdeterioration.Otherarrhythmiaslikeprematureventricularcontraction(PVC)etc.arenotsolethal,butarealsoimportantfordiagnosingtheheartdis-eases.Variousstudieshavebeenproposedforclassificationofvariouscardiacarrhythmias,suchasanalysisofpeaksintheshort-termautocorrelationfunction[1],time-frequencyanalysis[2],nonlineardynamicalmodelingmethod[3,4],to-talleastsquaresbasedPronymodelingalgorithm[5],cor-rectionwaveformanalysis[6],andartificialneuralnetworksfordecimatedECGanalysis[7].Generally,thesetechniquesclassifyonlytwoorthreearrhythmias,thereforethereisaneedforextendingtheidentificationtechniqueforalargernumberofarrhythmiasandeasyreal-timeimplementation.Multivariateautoregressive(MAR)modelingprovidesanapproachtoanalysethebio-signals.Forexample,MARmodelingwaswidelyusedtomodelheartrate(HR),bloodpressure(BP)andrespiration(RESP)forassessmentofinteractionbetweenthem[8].MARmodelingwasusedtoextractthefeaturesfromthehumanelectroencephalogramwithwhichmentaltaskscanbediscriminated[9].However,inthestudyofECGarrhythmiarecognitionproblems,re-searcheshavenotdonetoomuchusingMARmodelandmultipleleadECGs.Scalarautoregressive(AR)modelinghasbeenwidelyutilizedtomodelbio-signalsforthepur-poseofanalysis,suchasARmodelingofscalartimesignalsbasedonKalmanfilterforcalculatinginstantaneousmea-suresoflineardependence[10],ARmodelingusedtomodelheartratevariability(HRV)andforpowerspectrumesti-mationofECGandHRVsignals[11],ARcoefficientsusedasECGfeaturesforclassificationofcardiacarrhythmiasus-ingfuzzyARTMAP[12].ItisnotedthatnormalECGQRScomplexesareusuallyprominentinECGleadIIandnor-malbeatsarefrequentlydifficulttodiscerninECGleadVIalthoughectopicbeatswilloftenbemoreprominent.Thus,two-leadECGsignalscontainmoreinformationthan

ReceivedJanuary16,2006;inrevisedformMay24,2006

SupportedbyNaturalScienceFoundationofZhejiangProvinceofP.R.China(Y104284)

1.SchoolofInformationandElectronicEngineering,ZhejiangUni-versityofScienceandTechnology,Hangzhou310012,P.R.ChinaDOI:10.1360/aas-007-0462

one-leadECGsignals,andtheclassificationresultscanbeimprovedbyusingtwo-leadECGsignalssignificantly.

Thepurposeofthepresentworkistoexplorethefeasi-bilityofMARandARmodelingtoextracttheclassifica-tionfeaturesfromtwo-leadECGsignalsinordertoclassifymoretypesofcardiacarrhythmiaswithhigheraccuracy.Inthisstudy,MARandARmodelingwereperformedontheECGdataincludingnormalsinusrhythm(NSR),atriaprematurecontraction(APC),PVC,VT,VFandsuper-ventriculartachycardia(SVT).TherewerefourECGrep-resentationsbasedonthemodelcoefficients,andtheclassi-ficationwasperformedusingquadraticdiscriminantfunc-tion(QDF)basedclassifier.Threehundredsamplepat-ternseachfromthesixclasseswereselectedforanalysis.Atrainingdatasetconsistedof150samplepatternseachfromthesixclasses,andtheremainingdatawasusedfortesting.TheresultsshowedthattheMARcoefficientscouldclas-sifybetterthanotherthreerepresentations.Thus,MARmodelingisausefulclassificationanddiagnosistoolforthecardiacarrhythmias.

2

2.1

Methods

Preprocessing

ThedataintheanalysiswasobtainedfromtheMIT-BIHdatabase.TheNSR,PVCandAPCweresampledat360Hz,theVTandVFweresampledat250Hz,andtheSVTwassampledat128Hz.ThedataincludingNSR,PVC,APCandSVTwassubsampledinorderthatallthetwo-leadECGsignalsintheanalysishadafrequencyof250Hz.AllECGdatahavebeenfilteredtoremovethenoiseincludingrespiration,baselinedriftandwanderingetc.Thehigh-passfilterisofalinearphasecharacteristicbasedonthefrequencyof250Hz.Thecutofffrequencyofthehigh-passfilteris2Hz.Thus,thedriftcausedbyres-pirationatabout0.2Hzissufficientlyremoved.Theothernoisecausedbythemotionfromtheelectrodeisalsomin-imized.

TheRpeaksoftheECGsweredetectedusingTompkin󰀁salgorithm[13].AnormalECGreferstotheusualcaseinthehealthadultswheretheheartrateis60∼100beatsperminute.Inthecurrentstudy,thesamplesizeofthevarioussegmentswas0.9seconds.0.3secondsbeforeRpeakand0.6secondsafterRpeakwerepickedformodeling.Itisad-equatetocapturemostoftheinformationfromaparticularcardiaccycle.

No.5GEDing-Feietal.:StudyofFeatureExtractionBasedonAutoregressiveModeling···

463

2.2

MARandscalarARmodeling

[8A,9]

commonformofaMARmodeloforderPisgivenby.

X(k)=−

X

PA(i)X(k−i)+e(k)(1)i=1

whereX(k)isa2-dimensionalcolumnvectorofobserva-tionsattimek,e(k)isa2-dimensionalcolumnvectorof

unknown,zero-mean,uncorrelatedrandomvariable,A(i),fori=1,2,...,Pisthe2×2matricesofMARmodelcoef-ficientstobeestimated.

ItisimportanttodeterminethemodelorderwhichbestfitsthedatawhenconstructingaMARmodel.Themodelwasestimatedfrom225pointsofdata(0.9seconds)fromtwoECGleadsinthisresearch.Themodelorderselectionwasperformedonthesixtypesoftwo-leadECGsignalsin-cludingintheanalysis.Pre-selectedmodelordersfromonetoeightwereinvestigatedformodelorderselection.Burg󰀁salgorithmwasusedtoestimatetheMARcoefficients.Thecriterionusedtoevaluatethemodelorderselectionwasthesum-squarederror(SSE)inthiswork[10].

ScalarARmodelingwasperformedoneachofthetwoECGleadsforthesixtypesofECGsignals.TheARmodelorderwasestimatedbasedontheSSE,andwascalculatedoverallestimatesinthe225-pointwindowsegmentedfromsinglelead.

2.3ECGfeatures

Inthisstudy,fourdifferentrepresentationsofECGsig-nalswereusedforclassification:theMARcoefficients,theK-LMARcoefficients,thescalarARcoefficientsbasedontwo-leadECG,andthescalarARcoefficientsbasedonsingle-leadECG.

2.3.1ECGfeaturesbasedonMARandK-LMAR

coefficients

AMARprocessoforderPhasbeenappliedtothetwo-leadECGsignalsfromthesixclasses.ThenumberofMARcoefficientsrepresentingatwo-leadECGsegmentwas4P.Inordertoreducetheredundancyoffeatures,K-LMARcoefficientswascomputedandusedasfeatures.TheK-Ltransformcanreducethedimensionoffeaturespacebyprojectingtheoriginalfeaturevectorsontoasmallnum-berofeigenvectors.TheK-Ltransforminthisstudywasperformedasfollows[14]:

1)Calculatethewithin-classscattermatrix.2)Calculatetheeigenvaluesandeigenvectorsofthewithin-classscattermatrix.3)Thesetofmeigenvectorswhichcorrespondtothemlargesteigenvalueswaschosentotransfertheorigi-naldata,thecorrespondingeigenvectorsinthisstudywasdeterminedbytheindexiforwhichri/rmax≤0.001,wherei=1,2,...,4P,ri󰀁sareinthedescendingorder.4)Gener-atetheK-Ltransformbyprojectingeach4P-dimentionalpatternontothesechoseneigenvectors.Thusthedimen-sionofthefeaturesbasedonK-LMARcoefficientswasm.

2.3.2ECGfeaturesbasedonscalarARcoeffi-cients

AscalarARprocessoforderPhasbeenperformedoneachECGleadfromthesixclasses.ThescalarARco-efficientswereestimatedfromeachleadandconcatenatedtogethertoformthefeaturevectorsfortheclassification.ThenumberofthescalarARcoefficientsrepresentingatwo-leadECGsegmentwas2P,thenumberofthescalarARcoefficientsrepresentingasingle-leadECGsegmentwasP.

2.4

QDF-basedclassification

TheECGfeaturesdescribedasabovewereutilizedtoclassifythecardiacarrhythmias.Thevariouscardiacar-rhythmiashavebeenclassifiedbyastage-by-stageQDF-Basedalgorithmincurrentresearch.TheQDFisgivenby[14]

yi=Xiβ+εi(2)wherex=[x1,x2,...,xd]representsad-dimensionalECG

featurevector,yiisanobservedresponse,εiistheQDFerror,βisa(d(d+3)/2+1)-dimensionalcolumnvector.Xiisa(d(d+3)/2+1)-dimensionalrowvector,thatis

Xi=[1,x1,x2,...,xd,x21,x22,...,x2

d,2x1x2,2x1x3,...,2x1xd,2x2x3,2x2x4,...,2x2xd,...,2xd−1xd]

TheECGfeaturevectorofaparticularECGsegmentwasmappedtoaresponse(1or–1).AssumethetotalnumberoftheECGsegmentsusedforclassificationataparticularstageisD.Thefollowingequationcanbegiven

Y

˜=Aββ+E(3)

whereY

˜=[y1,y2,...,yD]TisaD-dimensionalcolumnvec-toroftheobservedresponses,andmadeupof“1”and“-1”,whichcorrespondtodifferentclassesrespectively,A=[X1,X2,...,XD]TisaD×(d(d+3)1/2+1)matrix,E=[ε1,ε2,...,εD]TisaD-dimensionalcolumnvectoroftheerrors.

Theleastsquaresestimatoris

β=(ATA)−1ATY

˜(4)

Thequadraticdiscriminantfunctionoftheclassifieris

YI=Xiβ

(5)

Table1showstheclassificationalgorithmfortheMAR

andK-LMARcoefficients.Thesimilarclassificational-gorithmcanbeconstructedforthescalarARcoefficients.ThecriterionbasedonstandarddeviationandEuclideancenterdistance(SDECD)wasusedtomeasurethesepara-bilitybetweentwoclasses.AssociatedvalueofSDECDwascomputedtodeterminethegroupingsoftheclassesateachstageinordertoperformthestage-by-stageclassification.TheSDECDcanbeexpressedas[14]

sP

d(µ1i−µ2i)2

J=

i=1(6)

3(1Pddσ1ii+

1

Pdσ2ii)

i=1

di=1

whereσ1iiandσ2ii(i=1,2,3,...,d)representthestan-darddeviationsofvariables,µ1=[µ11,µ12,...,µ1d]Tand

µ2=[µ21,µ22,...,µ2d]Taretheexpectedvectors.

Duringthetrainingphase,theestimatorβwascomputedbyequation(4)usingtheselectedtrainingsetsateachstageoftheclassification.Duringthetestingphase,theoutputresponseateachstageoftheclassificationwascomputedusingthefeaturevectorsandthepreviouslyestimatedβbyequation(5).Athresholdvalueofzerowasusedtoclas-sifytheoutputresponseataparticularstage.Theaveragesensitivityandspecificitywerecomputedforalltheclassesformeasuringtheperformanceoftheclassification[15].

464

Table1

ACTAAUTOMATICASINICA

ClassificationalgorithmforMARandK-LMARcoefficients

Vol.33

Stage1

Stage2GroupsMemberDecision-GroupsMemberDecision-shipmakingshipmakingNSR1Y1>0NSR-1Y2<0APC1Y1>0APC-1Y2<0PVC1Y1>0PVC-1Y2<0VT/VF1Y1>0VT/VF

1

Y2>0

SVT

-1

Y1<0

3

Results

3.1

MARandscalarARmodelingResults

InordertoevaluatetheperformanceoftheMARmodel-ing,theSSEwascomputedoverallestimatesinthelengthofmodeledECGsignals.TheresultsshowedthattheSSEdecreasedinitiallywiththemodelorderP,butremainedalmostconstantformodelordergreaterthanorequaltothree.However,MARmodeloforderfourwasselectedforextractingthefeatures.Thisisbecausemoredetailscanbeincorporatedintothemodelorder,whichmightbemissingfromalower-ordermodel.Ontheotherhand,thenumberoftheMARcoefficientsandcomputationforhigherorderswouldincreaserapidly.SotheMARmodeloforder4isafitterselection.

ScalarARmodelinghasbeenperformedforthepurposeofclassification.AfitterscalarARmodeloforder4wasfoundtomodeltheECGusingSSEcriterioncalculatedfromsingle-leadECGsandoverallestimatesinthe225-pointwindow.ThisresultwasconsistentwiththeotherresearchesonthescalarARmodelorderselection[16].3.2

Classificationresults

AMARmodeloforder4andascalarARmodeloforder4wereselectedtomodeltheECGsignalsinthecurrentre-search.TheMARcoefficientscomputedwithorder4,theK-LMARcoefficientsandthescalarARcoefficientsesti-matedwithorder4wereusedforQDF-basedclassification.3.2.1ClassificationresultsbasedonMARand

K-LMARcoefficients

TheECGfeatureswereextractedbyapplyingMARpro-cessoforder4tothetwo-leadECGsignals.Thisresultedinthe16MARcoefficientstorepresentatwo-leadECGsegmentinthisresearch.Table1showstheclassificationalgorithmforthiscase.ThevaluesofSDECDbetweentheseclasseswerecomputedfordeterminingthegroup-ingsofclassesateachstage.Table2showsthevaluesofSDECDbasedontheMARcoefficients.OnecanseethatAPC/NSR/PVC,VT/VFandSVTformonegrouprespec-tivelyduetosmallvaluesofSDECDwithinthesamegroupandlargevaluesbetweendifferentgroups.Therefore,SVTwasseparatedfromAPC/NSR/PVCandVT/VFinstageone(Y1).ThemembershipofSVTwasdefinedas“-1”,andthemembershipofAPC/NSR/PVCandVT/VFwasde-finedas“+1”.Theleastsquaresestimatorβwascomputedasequation(4).TheoutputresponseY1wascomputedasequation(5).ThevalueofY1wasusedtodeterminetheclasses.Similarly,VT/VFandAPC/NSR/PVCweredis-tinguishedbetweeneachotherinthesecondstage(Y2).

Stage3Stage4GroupsMemberDecision-GroupsMemberDecision-shipmakingshipmakingAPC/NSR-1Y3<0NSR1Y5>0PVC/NSR

1Y3>0PVC-1Y5<0VT-1Y4<0NSR1Y6>0VF

1

Y4>0

APC

-1

Y6<0

Stagethree(Y3andY4),four(Y5andY6)wereusedtodif-ferentiatebetweenAPC,NSR,PVC,VTandVFasshowninTable1.

Onehundredandfiftycaseseachfromthesixclasseswereselectedatrandomtoestimateβintrainingphase,andtheremainingwereusedfortestingintestingphase.TheclassificationresultsbasedontheMARcoefficientsontestingdataaregiveninTables3and4.Table3showsaclassificationresultsbasedontheMARcoefficientsforasampletrainingset.Table4showstheperformanceofclassificationbasedontheMARcoefficientsforthevariousclasses,whichwereaveragedover20runs,eachrunwithdifferenttrainingandtestingdatasets.

Table2

ValuesofSDECDbasedonMARcoefficientsbetween

thedifferentclasses

ClassesSVTAPCPVCNSRVTVFSVT01.65871.37751.57181.62872.8733APC1.658700.96691.23251.53972.8077PVC1.37750.966901.17391.43742.2122NSR1.57181.23251.173901.96312.2082VT1.62871.53971.43741.963101.0671VF

2.8733

2.8077

2.2122

2.2082

1.0671

0

Table3

ClassificationresultsbasedonMARcoefficientsfora

sampletrainingset

ClassesSVTAPCNSRPVCVTVFSVT14800200APC01473000NSR01149000PVC00014910VT00001500VF

0

0

0

0

0

150

Table4

PerformanceoftheclassificationbasedonMAR

coefficients

ClassesSVTNSRAPCPVCVFVTSensitivity98.6%99.3%98.0%99.3%100%100%Specificity

100%

98.0%

99.3%

98.6%

100%

99.3%

No.5GEDing-Feietal.:StudyofFeatureExtractionBasedonAutoregressiveModeling···465

Thenumberoftheeigenvectorswaschosentobe10ac-cordingtothechoicecriterionofeigenvectorsdescribedinsection2.Thus,10-dimensionalfeaturevectorsbasedonK-LMARcoefficientswereobtainedafterK-Ltransforma-tion.The10-dimensionalfeaturevectorsweretrainedandtestedthesamewayasintheMARcoefficientsbasedclas-sificationexperiments,theclassificationresultsbasedontheK-LMARcoefficientsonthetestingdataaregiveninTable5.

Table5

PerformanceoftheclassificationbasedonK-LMAR

coefficients

ClassesSVTNSRAPCPVCVFVTSensitivity97.3%99.3%96.6%95.3%98.6%96.6%Specificity

96.6%

93.3%

99.3%

98.0%

99.3%

97.3%

3.2.2

ClassificationresultsbasedonscalarARco-efficients

AscalarARprocessoforder4wasperformedoneachECGleadfromthesixclasses.Thus,thenumberofthescalarARcoefficientstorepresentatwo-leadECGseg-mentwas8.AsimilaranalysismethodwasemployedforthescalarARcoefficientclassification.TheclassificationresultsbasedonthescalarARcoefficientsandtwo-leadECGsegmentsareshowninTable6.

Table6

PerformanceoftheclassificationbasedonscalarARcoefficientsandtwo-leadECGsegments

ClassesSVTNSRAPCPVCVFVTSensitivity96%99.3%96.6%98.0%98.6%97.3%Specificity

99.3%

94.6%

99.3%

96.0%

99.3%

98.0%

TheclassificationresultsbasedonscalarARcoefficientsandsingle-leadECGaregiveninTable7.Itisforthepurposeofcomparisonbetweenone-leadECGsignalandtwo-leadECGsignalbasedclassification.

Table7

Performanceoftheclassificationbasedonsingle-lead

ECGsignals

ClassesSVTNSRAPCPVCVFVTSensitivity90.0%98.6%94.6%92.6%99.3%92.0%Specificity

95.3%

86.0%

99.3%

92.0%

97.3%

98.0%

4Discussions

Themainobjectiveofthisstudywastomodeltwo-leadECGsignalsforextractingfeaturesinordertoexplorethefeasibilitytoclassifymoretypesofcardiacarrhythmiasus-ingMARandARmodeling.ThemodelingresultsshowedthattheMARorderof4wassufficienttomodeltheECGsignalsforthepurposeoftheclassification,scalarARor-derof4wasalsosufficientforthesamepurpose.ItwasreportedthatthesufficientMARmodelorderwas25formodelingHR,BP,andRESPforthepurposeofassessmentofinteractionbetweenthemin[8].

ExtracalculationwasinvolvedincalculatingK-Ltrans-formofMARcoefficients.Thisrepresentationmaynotbeworthconsideringforareal-timesystem.Theclassifica-

tionofthescalarARcoefficientsextractedfromtwo-leadECGsproducedthesimilarpercentagesoftheaccuracycomparedtoclassificationoftheK-LMARcoefficients.TheclassificationofthescalarARcoefficientsextractedfromsignal-leadECGsgavethelowestclassificationac-curacy.Thus,theMARcoefficientswouldbethemostefficientECGsignalrepresentation.Usingtwo-leadECGsignalscanimprovetheclassificationaccuracysignificantlycomparedwithsingle-leadECGsignals.

ThecurrentstudyclassifiessixtypesofECGarrhyth-mias,andsomeoftheproposedtechniquesuseonlyasmallernumberofarrhythmiasthanthecurrentstudy.Forexample,twoARcoefficientsandthemean-squarevalueofQRScomplexsegmentwereutilizedasfeaturesforclas-sifyingPVCandNSRusingafuzzyARTMAPclassifier,sensitivityof97%andspecificityof99%wereachievedin[12],thetotalleastsequare-basedPronymodelingtech-niquewasusedfordetectingSVT,VTandVF,accuracyofSVT,VTandVFwere95.24%,96%and97.78%in[5].TheclassificationalgorithmsbasedonMARmodelingareeasytoimplement.Inthisstudy,thesamplesizeofthevarioussegmentswas0.9secondsonly,anditwas3to7secondsand5to9secondsforthecomplexitymeasure-basedtechniquein[3]andthePronymodelingtechniquein[5],respectively.

TheMARmodelmightnotbesuitedtoECGsignalsunderallconditionssinceMARmodelisalinearmodelingtechnique,nonlinearparametricmodelingmightimprovetheresults.Futureworkwouldinvolvereal-timedatacol-lectioninordertotestourhypothesisanddeterminetheprecisionofourmethodology.

5Conclusions

MARcoefficientsextractedbyfusingtwoECGleadscouldbeusedasfeaturestoclassifycertaincardiacar-rhythmiaseffectivelyincriticalillpatientsforreal-timeautomaticdiagnosispurpose.

References

1ChenS,ThakorNV,MoverMM.Ventricularfibrillationde-tectionbyaregressiontestontheautocorrelationfunction.MedicalandBiologicalEngineeringandComputing,1987,25(3):241∼2492AfonsoVX,TompkinsWJ.Detectingventricularfibrilla-tion:Selectingtheappropriatetimefrequencyanalysistoolfortheapplication.IEEEEngineeringinMedicineandBiol-ogyMagazine,1995,14(2):152∼1593ZhangXS,ZhuYS,ThakorNV,WangZZ.Detectingven-triculartachycardiaandfibrillationbycomplexitymeasure.IEEETransactionsonBiomedicalEngineering,1999,46(5):548∼5554JekovaI.ComparisonoffivealgorithmsforthedetectionofventricularfibrillationfromthesurfaceECG.PhysiologicalMeasurement,2000,21(4):429∼4395ChenSW.Twostagediscriminationofcardiacarrhyth-miasusingatotalleastsquaresbasedpronymodelingalgo-rithm.IEEETransactionsonBiomedicalEngineering,2000,47(10):1317∼13266CaswellSA,KlugeKS,ChiangCMJ,JenkinsJM,CarloLA.Patternrecognitionofcardiacarrhythmiasusingtwointracardiacchannels.In:ProceedingsofComputersinCar-diology.London,UK,IEEE,1993.181∼1847MeloSL,CalobaLP,NadalJ.Arrhythmiaanalysisusingartificialneuralnetworkanddecimatedelectrocardiographicdata.In:ProceedingsofComputersinCardiology.Piscat-away,USA,IEEE,2000.27:73∼76

466ACTAAUTOMATICASINICAVol.33

8JimenezJC,BiscayR,MontotoO.Modellingtheelectroen-cephalogrambymeansofspatialsplinesmoothingandtem-poralautoregression.BiologicalCybernetics,1995,72(3):249∼259

9KeirnZA,AunonJI.Anewmethodofcommunicationbetweenmanandhissurroundings.IEEETransactionsonBiomedicalEngineering,1990,37(12):1209∼1214

10ArnoldM,MiltnerWHR,WitteH.AdaptiveARmodeling

ofnonstationarytimeseriesbymeansofKalmanfiltering.IEEETransactionsonBiomedicalEngineering,1998,45(5):553∼562

11MainardiLT,BianchiAM,BaselliG,CeruttiS.Pole

trackingalgorithmsfortheextractionoftimevariantheartratevariabilityspectralparameters.IEEETransactionsonBiomedicalEngineering,1995,42(3):250∼258

12HamFM,HanS.Classificationofcardiacarrhythmiasus-ingfuzzyARTMAP.IEEETransactionsonBiomedicalEn-gineering,1996,43(4):425∼430

13TompkinsWJ.BiomedicalDigitalSignalProcessing.Engle-woodCliffs,NewJersey:PrenticeHall,1993,246∼261

14FukunagaK.IntroductiontoStatisticalPatternRecog-nition.NewYork:AcademicPress,1990,153∼154and400∼409

15BarroS,RuizR,CabelloD,MiraJ.Algorithmicsequential

decisionmakinginthefrequencydomainforlifethreateningventriculararrhythmiasandimitativeartefacts:adiagnos-ticsystem.JournalofBiomedicalEngineering,1989,11(4):320∼328

16GeDing-Fei,XiaShun-Ren.ApplicationofARmodelin

telediagnosisofcardiacarrhythmias.ChineseJournalofBiomedicalEngineering,2004,23(3):222∼229(inChinese)

GEDing-FeiReceivedhismasterde-greesfromNanyangTechnologicalUniver-sity,Singaporein2003.Nowheisanas-sociateprofessorinZhejiangUniversityofScienceandTechnology.Hisresearchin-terestcoverspatternrecognitionanddatamining.Correspondingauthorofthispa-per.E-mail:gedingfei@hotmail.com

HOUBei-PingReceivedhisPh.D.de-greefromZhejiangUniversityin2005.Hisresearchinterestcoversmachinevision,im-ageprocessing,andpatternrecognition.

XIANGXin-JianProfessorofZhe-jiangUniversityofScienceandTechnology.Hisresearchinterestcoversintelligentcon-trolandapplicationofpatternrecognition.

因篇幅问题不能全部显示,请点此查看更多更全内容