StudyofFeatureExtractionBasedonAutoregressive
ModelinginECGAutomaticDiagnosis
GEDing-Fei1
HOUBei-Ping1
XIANGXin-Jian1
AbstractThisarticleexplorestheabilityofmultivariateautoregressivemodel(MAR)andscalarARmodeltoextractthefeaturesfromtwo-leadelectrocardiogramsignalsinordertoclassifycertaincardiacarrhythmias.TheclassificationperformanceoffourdifferentECGfeaturesetsbasedonthemodelcoefficientsareshown.Thedataintheanalysisincludingnormalsinusrhythm,atriaprematurecontraction,prematureventricularcontraction,ventriculartachycardia,ventricularfibrillationandsuperventriculartachycardiaisobtainedfromtheMIT-BIHdatabase.Theclassificationisperformedusingaquadraticdiscriminantfunction.TheresultsshowtheMARcoefficientsproducethebestresultsamongthefourECGrepresentationsandtheMARmodelingisausefulclassificationanddiagnosistool.
KeywordsAutoregressivemodel,ECGfeatures,classification,automaticdiagnosis.
1Introduction
Oneofthemostimportanttasksisthereliabledetec-tionandclassificationofthearrhythmiasforautomaticmonitoringanddiagnosis.Amongthosethreateningar-rhythmias,ventriculartachycardia(VT)andventricularfibrillation(VF)aremostdangerousbecausetheyproducethehaemodynamicdeterioration.Otherarrhythmiaslikeprematureventricularcontraction(PVC)etc.arenotsolethal,butarealsoimportantfordiagnosingtheheartdis-eases.Variousstudieshavebeenproposedforclassificationofvariouscardiacarrhythmias,suchasanalysisofpeaksintheshort-termautocorrelationfunction[1],time-frequencyanalysis[2],nonlineardynamicalmodelingmethod[3,4],to-talleastsquaresbasedPronymodelingalgorithm[5],cor-rectionwaveformanalysis[6],andartificialneuralnetworksfordecimatedECGanalysis[7].Generally,thesetechniquesclassifyonlytwoorthreearrhythmias,thereforethereisaneedforextendingtheidentificationtechniqueforalargernumberofarrhythmiasandeasyreal-timeimplementation.Multivariateautoregressive(MAR)modelingprovidesanapproachtoanalysethebio-signals.Forexample,MARmodelingwaswidelyusedtomodelheartrate(HR),bloodpressure(BP)andrespiration(RESP)forassessmentofinteractionbetweenthem[8].MARmodelingwasusedtoextractthefeaturesfromthehumanelectroencephalogramwithwhichmentaltaskscanbediscriminated[9].However,inthestudyofECGarrhythmiarecognitionproblems,re-searcheshavenotdonetoomuchusingMARmodelandmultipleleadECGs.Scalarautoregressive(AR)modelinghasbeenwidelyutilizedtomodelbio-signalsforthepur-poseofanalysis,suchasARmodelingofscalartimesignalsbasedonKalmanfilterforcalculatinginstantaneousmea-suresoflineardependence[10],ARmodelingusedtomodelheartratevariability(HRV)andforpowerspectrumesti-mationofECGandHRVsignals[11],ARcoefficientsusedasECGfeaturesforclassificationofcardiacarrhythmiasus-ingfuzzyARTMAP[12].ItisnotedthatnormalECGQRScomplexesareusuallyprominentinECGleadIIandnor-malbeatsarefrequentlydifficulttodiscerninECGleadVIalthoughectopicbeatswilloftenbemoreprominent.Thus,two-leadECGsignalscontainmoreinformationthan
ReceivedJanuary16,2006;inrevisedformMay24,2006
SupportedbyNaturalScienceFoundationofZhejiangProvinceofP.R.China(Y104284)
1.SchoolofInformationandElectronicEngineering,ZhejiangUni-versityofScienceandTechnology,Hangzhou310012,P.R.ChinaDOI:10.1360/aas-007-0462
one-leadECGsignals,andtheclassificationresultscanbeimprovedbyusingtwo-leadECGsignalssignificantly.
Thepurposeofthepresentworkistoexplorethefeasi-bilityofMARandARmodelingtoextracttheclassifica-tionfeaturesfromtwo-leadECGsignalsinordertoclassifymoretypesofcardiacarrhythmiaswithhigheraccuracy.Inthisstudy,MARandARmodelingwereperformedontheECGdataincludingnormalsinusrhythm(NSR),atriaprematurecontraction(APC),PVC,VT,VFandsuper-ventriculartachycardia(SVT).TherewerefourECGrep-resentationsbasedonthemodelcoefficients,andtheclassi-ficationwasperformedusingquadraticdiscriminantfunc-tion(QDF)basedclassifier.Threehundredsamplepat-ternseachfromthesixclasseswereselectedforanalysis.Atrainingdatasetconsistedof150samplepatternseachfromthesixclasses,andtheremainingdatawasusedfortesting.TheresultsshowedthattheMARcoefficientscouldclas-sifybetterthanotherthreerepresentations.Thus,MARmodelingisausefulclassificationanddiagnosistoolforthecardiacarrhythmias.
2
2.1
Methods
Preprocessing
ThedataintheanalysiswasobtainedfromtheMIT-BIHdatabase.TheNSR,PVCandAPCweresampledat360Hz,theVTandVFweresampledat250Hz,andtheSVTwassampledat128Hz.ThedataincludingNSR,PVC,APCandSVTwassubsampledinorderthatallthetwo-leadECGsignalsintheanalysishadafrequencyof250Hz.AllECGdatahavebeenfilteredtoremovethenoiseincludingrespiration,baselinedriftandwanderingetc.Thehigh-passfilterisofalinearphasecharacteristicbasedonthefrequencyof250Hz.Thecutofffrequencyofthehigh-passfilteris2Hz.Thus,thedriftcausedbyres-pirationatabout0.2Hzissufficientlyremoved.Theothernoisecausedbythemotionfromtheelectrodeisalsomin-imized.
TheRpeaksoftheECGsweredetectedusingTompkinsalgorithm[13].AnormalECGreferstotheusualcaseinthehealthadultswheretheheartrateis60∼100beatsperminute.Inthecurrentstudy,thesamplesizeofthevarioussegmentswas0.9seconds.0.3secondsbeforeRpeakand0.6secondsafterRpeakwerepickedformodeling.Itisad-equatetocapturemostoftheinformationfromaparticularcardiaccycle.
No.5GEDing-Feietal.:StudyofFeatureExtractionBasedonAutoregressiveModeling···
463
2.2
MARandscalarARmodeling
[8A,9]
commonformofaMARmodeloforderPisgivenby.
X(k)=−
X
PA(i)X(k−i)+e(k)(1)i=1
whereX(k)isa2-dimensionalcolumnvectorofobserva-tionsattimek,e(k)isa2-dimensionalcolumnvectorof
unknown,zero-mean,uncorrelatedrandomvariable,A(i),fori=1,2,...,Pisthe2×2matricesofMARmodelcoef-ficientstobeestimated.
ItisimportanttodeterminethemodelorderwhichbestfitsthedatawhenconstructingaMARmodel.Themodelwasestimatedfrom225pointsofdata(0.9seconds)fromtwoECGleadsinthisresearch.Themodelorderselectionwasperformedonthesixtypesoftwo-leadECGsignalsin-cludingintheanalysis.Pre-selectedmodelordersfromonetoeightwereinvestigatedformodelorderselection.BurgsalgorithmwasusedtoestimatetheMARcoefficients.Thecriterionusedtoevaluatethemodelorderselectionwasthesum-squarederror(SSE)inthiswork[10].
ScalarARmodelingwasperformedoneachofthetwoECGleadsforthesixtypesofECGsignals.TheARmodelorderwasestimatedbasedontheSSE,andwascalculatedoverallestimatesinthe225-pointwindowsegmentedfromsinglelead.
2.3ECGfeatures
Inthisstudy,fourdifferentrepresentationsofECGsig-nalswereusedforclassification:theMARcoefficients,theK-LMARcoefficients,thescalarARcoefficientsbasedontwo-leadECG,andthescalarARcoefficientsbasedonsingle-leadECG.
2.3.1ECGfeaturesbasedonMARandK-LMAR
coefficients
AMARprocessoforderPhasbeenappliedtothetwo-leadECGsignalsfromthesixclasses.ThenumberofMARcoefficientsrepresentingatwo-leadECGsegmentwas4P.Inordertoreducetheredundancyoffeatures,K-LMARcoefficientswascomputedandusedasfeatures.TheK-Ltransformcanreducethedimensionoffeaturespacebyprojectingtheoriginalfeaturevectorsontoasmallnum-berofeigenvectors.TheK-Ltransforminthisstudywasperformedasfollows[14]:
1)Calculatethewithin-classscattermatrix.2)Calculatetheeigenvaluesandeigenvectorsofthewithin-classscattermatrix.3)Thesetofmeigenvectorswhichcorrespondtothemlargesteigenvalueswaschosentotransfertheorigi-naldata,thecorrespondingeigenvectorsinthisstudywasdeterminedbytheindexiforwhichri/rmax≤0.001,wherei=1,2,...,4P,risareinthedescendingorder.4)Gener-atetheK-Ltransformbyprojectingeach4P-dimentionalpatternontothesechoseneigenvectors.Thusthedimen-sionofthefeaturesbasedonK-LMARcoefficientswasm.
2.3.2ECGfeaturesbasedonscalarARcoeffi-cients
AscalarARprocessoforderPhasbeenperformedoneachECGleadfromthesixclasses.ThescalarARco-efficientswereestimatedfromeachleadandconcatenatedtogethertoformthefeaturevectorsfortheclassification.ThenumberofthescalarARcoefficientsrepresentingatwo-leadECGsegmentwas2P,thenumberofthescalarARcoefficientsrepresentingasingle-leadECGsegmentwasP.
2.4
QDF-basedclassification
TheECGfeaturesdescribedasabovewereutilizedtoclassifythecardiacarrhythmias.Thevariouscardiacar-rhythmiashavebeenclassifiedbyastage-by-stageQDF-Basedalgorithmincurrentresearch.TheQDFisgivenby[14]
yi=Xiβ+εi(2)wherex=[x1,x2,...,xd]representsad-dimensionalECG
featurevector,yiisanobservedresponse,εiistheQDFerror,βisa(d(d+3)/2+1)-dimensionalcolumnvector.Xiisa(d(d+3)/2+1)-dimensionalrowvector,thatis
Xi=[1,x1,x2,...,xd,x21,x22,...,x2
d,2x1x2,2x1x3,...,2x1xd,2x2x3,2x2x4,...,2x2xd,...,2xd−1xd]
TheECGfeaturevectorofaparticularECGsegmentwasmappedtoaresponse(1or–1).AssumethetotalnumberoftheECGsegmentsusedforclassificationataparticularstageisD.Thefollowingequationcanbegiven
Y
˜=Aββ+E(3)
whereY
˜=[y1,y2,...,yD]TisaD-dimensionalcolumnvec-toroftheobservedresponses,andmadeupof“1”and“-1”,whichcorrespondtodifferentclassesrespectively,A=[X1,X2,...,XD]TisaD×(d(d+3)1/2+1)matrix,E=[ε1,ε2,...,εD]TisaD-dimensionalcolumnvectoroftheerrors.
Theleastsquaresestimatoris
β=(ATA)−1ATY
˜(4)
Thequadraticdiscriminantfunctionoftheclassifieris
YI=Xiβ
(5)
Table1showstheclassificationalgorithmfortheMAR
andK-LMARcoefficients.Thesimilarclassificational-gorithmcanbeconstructedforthescalarARcoefficients.ThecriterionbasedonstandarddeviationandEuclideancenterdistance(SDECD)wasusedtomeasurethesepara-bilitybetweentwoclasses.AssociatedvalueofSDECDwascomputedtodeterminethegroupingsoftheclassesateachstageinordertoperformthestage-by-stageclassification.TheSDECDcanbeexpressedas[14]
sP
d(µ1i−µ2i)2
J=
i=1(6)
3(1Pddσ1ii+
1
Pdσ2ii)
i=1
di=1
whereσ1iiandσ2ii(i=1,2,3,...,d)representthestan-darddeviationsofvariables,µ1=[µ11,µ12,...,µ1d]Tand
µ2=[µ21,µ22,...,µ2d]Taretheexpectedvectors.
Duringthetrainingphase,theestimatorβwascomputedbyequation(4)usingtheselectedtrainingsetsateachstageoftheclassification.Duringthetestingphase,theoutputresponseateachstageoftheclassificationwascomputedusingthefeaturevectorsandthepreviouslyestimatedβbyequation(5).Athresholdvalueofzerowasusedtoclas-sifytheoutputresponseataparticularstage.Theaveragesensitivityandspecificitywerecomputedforalltheclassesformeasuringtheperformanceoftheclassification[15].
464
Table1
ACTAAUTOMATICASINICA
ClassificationalgorithmforMARandK-LMARcoefficients
Vol.33
Stage1
Stage2GroupsMemberDecision-GroupsMemberDecision-shipmakingshipmakingNSR1Y1>0NSR-1Y2<0APC1Y1>0APC-1Y2<0PVC1Y1>0PVC-1Y2<0VT/VF1Y1>0VT/VF
1
Y2>0
SVT
-1
Y1<0
3
Results
3.1
MARandscalarARmodelingResults
InordertoevaluatetheperformanceoftheMARmodel-ing,theSSEwascomputedoverallestimatesinthelengthofmodeledECGsignals.TheresultsshowedthattheSSEdecreasedinitiallywiththemodelorderP,butremainedalmostconstantformodelordergreaterthanorequaltothree.However,MARmodeloforderfourwasselectedforextractingthefeatures.Thisisbecausemoredetailscanbeincorporatedintothemodelorder,whichmightbemissingfromalower-ordermodel.Ontheotherhand,thenumberoftheMARcoefficientsandcomputationforhigherorderswouldincreaserapidly.SotheMARmodeloforder4isafitterselection.
ScalarARmodelinghasbeenperformedforthepurposeofclassification.AfitterscalarARmodeloforder4wasfoundtomodeltheECGusingSSEcriterioncalculatedfromsingle-leadECGsandoverallestimatesinthe225-pointwindow.ThisresultwasconsistentwiththeotherresearchesonthescalarARmodelorderselection[16].3.2
Classificationresults
AMARmodeloforder4andascalarARmodeloforder4wereselectedtomodeltheECGsignalsinthecurrentre-search.TheMARcoefficientscomputedwithorder4,theK-LMARcoefficientsandthescalarARcoefficientsesti-matedwithorder4wereusedforQDF-basedclassification.3.2.1ClassificationresultsbasedonMARand
K-LMARcoefficients
TheECGfeatureswereextractedbyapplyingMARpro-cessoforder4tothetwo-leadECGsignals.Thisresultedinthe16MARcoefficientstorepresentatwo-leadECGsegmentinthisresearch.Table1showstheclassificationalgorithmforthiscase.ThevaluesofSDECDbetweentheseclasseswerecomputedfordeterminingthegroup-ingsofclassesateachstage.Table2showsthevaluesofSDECDbasedontheMARcoefficients.OnecanseethatAPC/NSR/PVC,VT/VFandSVTformonegrouprespec-tivelyduetosmallvaluesofSDECDwithinthesamegroupandlargevaluesbetweendifferentgroups.Therefore,SVTwasseparatedfromAPC/NSR/PVCandVT/VFinstageone(Y1).ThemembershipofSVTwasdefinedas“-1”,andthemembershipofAPC/NSR/PVCandVT/VFwasde-finedas“+1”.Theleastsquaresestimatorβwascomputedasequation(4).TheoutputresponseY1wascomputedasequation(5).ThevalueofY1wasusedtodeterminetheclasses.Similarly,VT/VFandAPC/NSR/PVCweredis-tinguishedbetweeneachotherinthesecondstage(Y2).
Stage3Stage4GroupsMemberDecision-GroupsMemberDecision-shipmakingshipmakingAPC/NSR-1Y3<0NSR1Y5>0PVC/NSR
1Y3>0PVC-1Y5<0VT-1Y4<0NSR1Y6>0VF
1
Y4>0
APC
-1
Y6<0
Stagethree(Y3andY4),four(Y5andY6)wereusedtodif-ferentiatebetweenAPC,NSR,PVC,VTandVFasshowninTable1.
Onehundredandfiftycaseseachfromthesixclasseswereselectedatrandomtoestimateβintrainingphase,andtheremainingwereusedfortestingintestingphase.TheclassificationresultsbasedontheMARcoefficientsontestingdataaregiveninTables3and4.Table3showsaclassificationresultsbasedontheMARcoefficientsforasampletrainingset.Table4showstheperformanceofclassificationbasedontheMARcoefficientsforthevariousclasses,whichwereaveragedover20runs,eachrunwithdifferenttrainingandtestingdatasets.
Table2
ValuesofSDECDbasedonMARcoefficientsbetween
thedifferentclasses
ClassesSVTAPCPVCNSRVTVFSVT01.65871.37751.57181.62872.8733APC1.658700.96691.23251.53972.8077PVC1.37750.966901.17391.43742.2122NSR1.57181.23251.173901.96312.2082VT1.62871.53971.43741.963101.0671VF
2.8733
2.8077
2.2122
2.2082
1.0671
0
Table3
ClassificationresultsbasedonMARcoefficientsfora
sampletrainingset
ClassesSVTAPCNSRPVCVTVFSVT14800200APC01473000NSR01149000PVC00014910VT00001500VF
0
0
0
0
0
150
Table4
PerformanceoftheclassificationbasedonMAR
coefficients
ClassesSVTNSRAPCPVCVFVTSensitivity98.6%99.3%98.0%99.3%100%100%Specificity
100%
98.0%
99.3%
98.6%
100%
99.3%
No.5GEDing-Feietal.:StudyofFeatureExtractionBasedonAutoregressiveModeling···465
Thenumberoftheeigenvectorswaschosentobe10ac-cordingtothechoicecriterionofeigenvectorsdescribedinsection2.Thus,10-dimensionalfeaturevectorsbasedonK-LMARcoefficientswereobtainedafterK-Ltransforma-tion.The10-dimensionalfeaturevectorsweretrainedandtestedthesamewayasintheMARcoefficientsbasedclas-sificationexperiments,theclassificationresultsbasedontheK-LMARcoefficientsonthetestingdataaregiveninTable5.
Table5
PerformanceoftheclassificationbasedonK-LMAR
coefficients
ClassesSVTNSRAPCPVCVFVTSensitivity97.3%99.3%96.6%95.3%98.6%96.6%Specificity
96.6%
93.3%
99.3%
98.0%
99.3%
97.3%
3.2.2
ClassificationresultsbasedonscalarARco-efficients
AscalarARprocessoforder4wasperformedoneachECGleadfromthesixclasses.Thus,thenumberofthescalarARcoefficientstorepresentatwo-leadECGseg-mentwas8.AsimilaranalysismethodwasemployedforthescalarARcoefficientclassification.TheclassificationresultsbasedonthescalarARcoefficientsandtwo-leadECGsegmentsareshowninTable6.
Table6
PerformanceoftheclassificationbasedonscalarARcoefficientsandtwo-leadECGsegments
ClassesSVTNSRAPCPVCVFVTSensitivity96%99.3%96.6%98.0%98.6%97.3%Specificity
99.3%
94.6%
99.3%
96.0%
99.3%
98.0%
TheclassificationresultsbasedonscalarARcoefficientsandsingle-leadECGaregiveninTable7.Itisforthepurposeofcomparisonbetweenone-leadECGsignalandtwo-leadECGsignalbasedclassification.
Table7
Performanceoftheclassificationbasedonsingle-lead
ECGsignals
ClassesSVTNSRAPCPVCVFVTSensitivity90.0%98.6%94.6%92.6%99.3%92.0%Specificity
95.3%
86.0%
99.3%
92.0%
97.3%
98.0%
4Discussions
Themainobjectiveofthisstudywastomodeltwo-leadECGsignalsforextractingfeaturesinordertoexplorethefeasibilitytoclassifymoretypesofcardiacarrhythmiasus-ingMARandARmodeling.ThemodelingresultsshowedthattheMARorderof4wassufficienttomodeltheECGsignalsforthepurposeoftheclassification,scalarARor-derof4wasalsosufficientforthesamepurpose.ItwasreportedthatthesufficientMARmodelorderwas25formodelingHR,BP,andRESPforthepurposeofassessmentofinteractionbetweenthemin[8].
ExtracalculationwasinvolvedincalculatingK-Ltrans-formofMARcoefficients.Thisrepresentationmaynotbeworthconsideringforareal-timesystem.Theclassifica-
tionofthescalarARcoefficientsextractedfromtwo-leadECGsproducedthesimilarpercentagesoftheaccuracycomparedtoclassificationoftheK-LMARcoefficients.TheclassificationofthescalarARcoefficientsextractedfromsignal-leadECGsgavethelowestclassificationac-curacy.Thus,theMARcoefficientswouldbethemostefficientECGsignalrepresentation.Usingtwo-leadECGsignalscanimprovetheclassificationaccuracysignificantlycomparedwithsingle-leadECGsignals.
ThecurrentstudyclassifiessixtypesofECGarrhyth-mias,andsomeoftheproposedtechniquesuseonlyasmallernumberofarrhythmiasthanthecurrentstudy.Forexample,twoARcoefficientsandthemean-squarevalueofQRScomplexsegmentwereutilizedasfeaturesforclas-sifyingPVCandNSRusingafuzzyARTMAPclassifier,sensitivityof97%andspecificityof99%wereachievedin[12],thetotalleastsequare-basedPronymodelingtech-niquewasusedfordetectingSVT,VTandVF,accuracyofSVT,VTandVFwere95.24%,96%and97.78%in[5].TheclassificationalgorithmsbasedonMARmodelingareeasytoimplement.Inthisstudy,thesamplesizeofthevarioussegmentswas0.9secondsonly,anditwas3to7secondsand5to9secondsforthecomplexitymeasure-basedtechniquein[3]andthePronymodelingtechniquein[5],respectively.
TheMARmodelmightnotbesuitedtoECGsignalsunderallconditionssinceMARmodelisalinearmodelingtechnique,nonlinearparametricmodelingmightimprovetheresults.Futureworkwouldinvolvereal-timedatacol-lectioninordertotestourhypothesisanddeterminetheprecisionofourmethodology.
5Conclusions
MARcoefficientsextractedbyfusingtwoECGleadscouldbeusedasfeaturestoclassifycertaincardiacar-rhythmiaseffectivelyincriticalillpatientsforreal-timeautomaticdiagnosispurpose.
References
1ChenS,ThakorNV,MoverMM.Ventricularfibrillationde-tectionbyaregressiontestontheautocorrelationfunction.MedicalandBiologicalEngineeringandComputing,1987,25(3):241∼2492AfonsoVX,TompkinsWJ.Detectingventricularfibrilla-tion:Selectingtheappropriatetimefrequencyanalysistoolfortheapplication.IEEEEngineeringinMedicineandBiol-ogyMagazine,1995,14(2):152∼1593ZhangXS,ZhuYS,ThakorNV,WangZZ.Detectingven-triculartachycardiaandfibrillationbycomplexitymeasure.IEEETransactionsonBiomedicalEngineering,1999,46(5):548∼5554JekovaI.ComparisonoffivealgorithmsforthedetectionofventricularfibrillationfromthesurfaceECG.PhysiologicalMeasurement,2000,21(4):429∼4395ChenSW.Twostagediscriminationofcardiacarrhyth-miasusingatotalleastsquaresbasedpronymodelingalgo-rithm.IEEETransactionsonBiomedicalEngineering,2000,47(10):1317∼13266CaswellSA,KlugeKS,ChiangCMJ,JenkinsJM,CarloLA.Patternrecognitionofcardiacarrhythmiasusingtwointracardiacchannels.In:ProceedingsofComputersinCar-diology.London,UK,IEEE,1993.181∼1847MeloSL,CalobaLP,NadalJ.Arrhythmiaanalysisusingartificialneuralnetworkanddecimatedelectrocardiographicdata.In:ProceedingsofComputersinCardiology.Piscat-away,USA,IEEE,2000.27:73∼76
466ACTAAUTOMATICASINICAVol.33
8JimenezJC,BiscayR,MontotoO.Modellingtheelectroen-cephalogrambymeansofspatialsplinesmoothingandtem-poralautoregression.BiologicalCybernetics,1995,72(3):249∼259
9KeirnZA,AunonJI.Anewmethodofcommunicationbetweenmanandhissurroundings.IEEETransactionsonBiomedicalEngineering,1990,37(12):1209∼1214
10ArnoldM,MiltnerWHR,WitteH.AdaptiveARmodeling
ofnonstationarytimeseriesbymeansofKalmanfiltering.IEEETransactionsonBiomedicalEngineering,1998,45(5):553∼562
11MainardiLT,BianchiAM,BaselliG,CeruttiS.Pole
trackingalgorithmsfortheextractionoftimevariantheartratevariabilityspectralparameters.IEEETransactionsonBiomedicalEngineering,1995,42(3):250∼258
12HamFM,HanS.Classificationofcardiacarrhythmiasus-ingfuzzyARTMAP.IEEETransactionsonBiomedicalEn-gineering,1996,43(4):425∼430
13TompkinsWJ.BiomedicalDigitalSignalProcessing.Engle-woodCliffs,NewJersey:PrenticeHall,1993,246∼261
14FukunagaK.IntroductiontoStatisticalPatternRecog-nition.NewYork:AcademicPress,1990,153∼154and400∼409
15BarroS,RuizR,CabelloD,MiraJ.Algorithmicsequential
decisionmakinginthefrequencydomainforlifethreateningventriculararrhythmiasandimitativeartefacts:adiagnos-ticsystem.JournalofBiomedicalEngineering,1989,11(4):320∼328
16GeDing-Fei,XiaShun-Ren.ApplicationofARmodelin
telediagnosisofcardiacarrhythmias.ChineseJournalofBiomedicalEngineering,2004,23(3):222∼229(inChinese)
GEDing-FeiReceivedhismasterde-greesfromNanyangTechnologicalUniver-sity,Singaporein2003.Nowheisanas-sociateprofessorinZhejiangUniversityofScienceandTechnology.Hisresearchin-terestcoverspatternrecognitionanddatamining.Correspondingauthorofthispa-per.E-mail:gedingfei@hotmail.com
HOUBei-PingReceivedhisPh.D.de-greefromZhejiangUniversityin2005.Hisresearchinterestcoversmachinevision,im-ageprocessing,andpatternrecognition.
XIANGXin-JianProfessorofZhe-jiangUniversityofScienceandTechnology.Hisresearchinterestcoversintelligentcon-trolandapplicationofpatternrecognition.
因篇幅问题不能全部显示,请点此查看更多更全内容