您的当前位置:首页正文

主动直腿抬高试验的生物力学机制

2020-06-10 来源:意榕旅游网
主动直腿抬高试验的生物力学机制

胡海;张智长;连小峰;张长青

【摘 要】研究发现,部分腰痛患者出现运动控制和运动模式改变.主动直腿抬高试验是腰痛最常使用的临床检查方法之一,作为腰痛亚型(尤其是妊娠相关骨盆带疼痛)的诊断和鉴别诊断手段,它具有较好的可靠性、敏感性和特异性.主动直腿抬高试验是一系列复杂的运动控制过程,涉及除腰骨盆外全身多部位的联动,以达到腰骨盆稳定. 【期刊名称】《国际骨科学杂志》 【年(卷),期】2015(036)006 【总页数】3页(P387-389)

【关键词】主动直腿抬高试验;腰痛;生物力学 【作 者】胡海;张智长;连小峰;张长青

【作者单位】200233,上海交通大学附属第六人民医院骨科;200233,上海交通大学附属第六人民医院骨科;200233,上海交通大学附属第六人民医院骨科;200233,上海交通大学附属第六人民医院骨科 【正文语种】中 文

作者单位: 200233, 上海交通大学附属第六人民医院骨科

研究显示,75%~85%的人在一生中出现过腰痛[1],40%的急性腰痛患者可出现慢性腰痛[2]。目前腰痛发生率不断增加[3],其导致的社会经济问题逐步引起重视。腰痛致病因素很多,其可受病理解剖学、生理学、神经生物学、精神病学和社会学

等的影响。持续大于3个月的腰痛称为慢性腰痛。除肿瘤、椎间盘变性、创伤、感染、脊柱小关节疾病、脊柱狭窄症、脊柱真(假)性滑脱症、脊柱侧弯症、严重骨质疏松症及代谢或风湿性疾病导致的腰痛外,尚有很多腰痛查不出病因,此类腰痛称为非特异性腰痛。因此,对腰痛进行分类、找出腰痛主要致病因素非常有必要[4-5]。研究发现,一些腰痛患者出现运动控制改变[6-8]和运动模式变化[9]。目前学者们对脊柱相关肌肉功能变化引起的腰痛和(或)腰椎不稳定达成部分统一意见,但由于腰痛的多样性,仍缺乏简单、有效、可靠的腰痛临床检查方法对其进行鉴别诊断。美国物理治疗协会骨科组“关于功能、残疾和健康分类的临床应用指南”[10]提到最常用到的七大腰痛检查方法中主动直腿抬高试验(ASLR)最为大家所熟悉,同时它也被证实是可靠有效的[11-12]。

ASLR作为评估腰骨盆部位在躯干和双下肢之间应力转移的临床检查方法,有别于被动直腿抬高试验(用于检查腘绳肌紧张度和诊断坐骨神经或神经根刺激与否)。ASLR检查方法为:患者仰卧位,双下肢放松伸直,双足分开20 cm;单侧下肢伸直缓慢抬起,离床20 cm,维持5~20 s,然后缓慢放下[12-14]。该试验已用于一些腰痛亚群如骶髂关节痛[6]和妊娠相关骨盆带疼痛(PPGP)[15-18]等的研究。PPGP患者往往会在ASLR时出现疼痛或抬腿受限,ASLR具有很好的可靠性、敏感性和特异性,可用于鉴别PPGP与其他类型腰痛[16]。然而,ASLR生物力学特性远没有想象的那么简单,甚至涉及全身多部位联动。

从生物力学角度看,ASLR具有以下特点:①仰卧位单侧(非对称性)下肢活动,对腰骨盆造成一定的干扰;②以屈髋肌收缩为主,其他局部和全身相关肌肉都有适当收缩来稳定腰骨盆部位;③是一个动态的过程。健康人能充分调动腰骨盆部位的运动功能,轻松进行仰卧位ASLR,这是因为在正常情况下,腰骨盆为人体中轴结构的一部分,当其受到外界干扰时,该部位周围肌肉在中枢神经系统的调控下,会及时精准地作出反应,对其进行恰当保护[19],这也是所谓的运动控制。对于腰痛及

腰骨盆稳定性和运动控制研究,ASLR不失为一个良好的生物力学运动模型。 研究[13]发现,在单侧ASLR时,腰骨盆周围肌肉均未发生双侧收缩。Snijders等[20-23]提出,除了骨盆带自身的关节解剖稳定性(即解剖锁合)外,双侧腹横肌、腹内斜肌和腹外斜肌通过将髂骨压至骶骨亦可稳定骨盆,达到骶髂关节动力锁合作用。骨盆束带有利于缓解ASLR阳性患者症状,可能是因为其可代替或部分代替动力锁合功能[12]。此外,盆底肌肉是否参与动力锁合作用也引起学者们的探讨[17]。至今,尚不清楚骨盆在ASLR时旋转的原因及其与骨盆稳定的相关性。

Liebenson等[24]报道,ASLR时骨盆在水平面同侧旋转间接提示腰椎稳定性的需求。Hu等[25]研究发现,ASLR时双侧(而非单侧)腰大肌均出现收缩信号,认为这有助于腰椎稳定。腰大肌属于长梭肌,有肌束分别起自T12~L5椎体和椎间隙侧面及所有腰椎横突前侧,它经过骨盆附着于小粗隆,故其解剖结构非常适合腰椎侧方稳定[26]。当然,大多学者认为腰大肌收缩更多地增加髋部屈曲范围。Yoshio等[27]的尸体实验表明,腰大肌主要功能是腰椎的稳定肌并在股骨头屈曲最初15°时作用,但在股骨头屈曲15°~45°时并不是有效的屈髋肌。

多个研究试图将对称性稳定功能的肌肉活动与非对称性抬腿的肌肉活动区分开。有研究[17,28]认为,如果未发现非对称性活动,则该活动呈对称性。然而,这一观点尚存在争议[29-30]。每块肌肉都参与多重任务,而同一个任务也可由多块肌肉共同完成[25,31]。肌肉活动包括对称性成分和非对称性成分,但仍需理清有多少成分参与ASLR活动。对于ASLR各时段中各肌肉间如何相互协同和拮抗,目前亦不清楚。

笔者[32]最近发表的一篇文章,对健康成年女性肌电图进行研究,初步揭示ASLR机制,看似简单的ASLR,其实是一系列复杂的运动控制过程:①ASLR时,屈髋肌活动增强,从而将大腿抬起;②这些屈髋肌同时对髂骨施加一向前的牵拉力,这就需要对侧股二头肌收缩进行对抗;③对侧股二头肌要达到对抗效果,将力传到同

侧,要求骨盆运动如一整体,因此外侧腹部肌群收缩,产生动力锁合;④同侧腹部肌群收缩,同时产生力使同侧骨盆旋后,参与对抗同侧髂骨前倾;⑤对侧股二头肌收缩增加了对侧跟部对床面的压力,根据杠杆原理,对侧骨盆在横截面向上翘起,即向同侧旋转,腹横肌和腹内斜肌额外的收缩力正好对抗这种旋转。然而,这只是通过肌电活动情况进行的推断,仍缺乏运动学和动力学证据,且尚有许多问题如躯干如何联动、肩部是否受影响、髋-骨盆-腰椎联动规律如何、每个环节的病理状况是否与PPGP病因有关等亟待解决。

综上所述,临床上ASLR不仅可用于诊断和鉴别诊断腰痛不同亚型(尤其是PPGP),而且它是一个优良的生物力学运动模型,对于腰痛及腰骨盆稳定性和运动控制是一很好的研究手段。从生物力学角度,ASLR其实是一系列复杂的运动控制过程,以达到腰骨盆稳定性的作用。对于一些腰痛患者,运动控制失调可能是其主要病因,稳定腰骨盆的方法如骨盆束带等能代替或部分代替动力锁合的功能,达到治疗目的。但诸如骨盆旋转和骨盆稳定相关性及肌肉参与骨盆稳定的成分多少、如何相互协同(拮抗)等问题,尚有待进一步探寻答案。

【相关文献】

[1] Andersson GB. Epidemiological features of chronic low-back pain[J]. Lancet, 1999, 354(9178):581-585. [2] Costa-Lda C, Maher CG, McAuley JH, et al. Prognosis for patients with chronic low back pain: inception cohort study[J]. BMJ, 2009, 339:b3829. [3]

Martin BI, Deyo RA, Mirza SK, et al. Expenditures and health status among adults with back and neck problems[J]. JAMA, 2008, 299(6):656-664. [4]

Childs JD, Fritz JM, Piva SR, et al. Clinical decision making in the identification of patients likely to benefit from spinal manipulation: a traditional versus an evidence-

based approach[J]. J Orthop Sports Phys Ther, 2003, 33(5):259-272. [5]

Hall H, McInstosh G, Boyle C. Effectiveness of a low back pain classification system[J]. Spine J, 2009, 9(8):648-657. [6]

O’Sullivan P. Diagnosis and classification of chronic low back pain disorders: maladaptive movement and motor control impairments as underlying mechanism[J]. Man Ther, 2005, 10(4):242-255. [7]

Silfies SP, Squillante D, Maurer P, et al. Trunk muscle recruitment patterns in specific chronic low back pain populations[J]. Clin Biomech (Bristol, Avon), 2005, 20(5):465-473. [8]

Richardson CA, Snijders CJ, Hides JA, et al. The relation between the transversus abdominis muscles, sacroiliac joint mechanics, and low back pain[J]. Spine (Phila Pa 1976), 2002, 27(4):399-405. [9]

Shum GL, Crosbie J, Lee RY. Effect of low back pain on the kinematics and joint coordination of the lumbar spine and hip during sit-to-stand and stand-to-sit[J]. Spine (Phila Pa 1976), 2005, 30(17):1998-2004. [10]

Delitto A, George SZ, van Dillen LR, et al. Low back pain[J]. J Orthop Sports Phys Ther, 2012, 42(4):A1-A57. [11]

Roussel NA, Nijs J, Truijen S, et al. Low back pain: clinimetric properties of the Trendelenburg test, active straight leg raise test, and breathing pattern during active straight leg raising[J]. J Manipulative Physiol Ther, 2007, 30(4):270-278. [12]

Mens JM, Vleeming A, Snijders CJ, et al. The active straight leg raising test and mobility of the pelvic joints[J]. Eur Spine J, 1999, 8(6):468-473. [13]

Hu H, Meijer OG, van Dieen JH, et al. Muscle activity during the active straight leg raise (ASLR), and the effects of a pelvic belt on the ASLR and on treadmill walking[J]. J Biomech, 2010, 43(3):532-539. [14]

Corkery MB, O’Rourke B, Viola S, et al. An exploratory examination of the association between altered lumbar motor control, joint mobility and low back pain in athletes[J]. Asian J Sports Med, 2014, 5(4):e24283.

[15]

Mens JM, Vleeming A, Snijders CJ, et al. Reliability and validity of the active straight leg raise test in posterior pelvic pain since pregnancy[J]. Spine (Phila Pa 1976), 2001, 26(10):1167-1171. [16]

Mens JM, Vleeming A, Snijders CJ, et al. Reliability and validity of hip adduction strength to measure disease severity in posterior pelvic pain since pregnancy[J]. Spine (Phila Pa 1976), 2002, 27(15):1674-1679. [17]

Beales DJ, O’Sullivan PB, Briffa NK. Motor control patterns during an active straight leg raise in chronic pelvic girdle pain subjects[J]. Spine (Phila Pa 1976), 2009, 34(9):861-870. [18]

Beales DJ, O’Sullivan PB, Briffa NK. The effects of manual pelvic compression on trunk motor control during an active straight leg raise in chronic pelvic girdle pain subjects[J]. Man Ther, 2010, 15(2):190-199. [19]

Panjabi MM. The stabilizing system of the spine. Part Ⅰ. Function, dysfunction, adaptation, and enhancement[J]. J Spinal Disord, 1992, 5(4):383-389. [20]

Snijders C, Vleeming A, Stoeckart R. Transfer of lumbosacral load to iliac bones and legs Part 1: biomechanics of self-bracing of the sacroiliac joints and its significance for treatment and exercise[J]. Clin Biomech (Bristol, Avon), 1993, 8(6):285-294. [21]

Snijders CJ, Vleeming A, Stoeckart R. Transfer of lumbosacral load to iliac bones and legs Part 2: loading of the sacroiliac joints when lifting in a stooped posture[J]. Clin Biomech (Bristol, Avon), 1993, 8(6):295-301. [22]

Vleeming A, Stoeckart R, Volkers AC, et al. Relation between form and function in the sacroiliac joint, Part Ⅰ: Clinical anatomical aspects[J]. Spine (Phila Pa 1976), 1990, 15(2):130-132. [23]

Vleeming A, Volkers AC, Snijders CJ, et al. Relation between form and function in the sacroiliac joint, Part Ⅱ: Biomechanical aspects[J]. Spine (Phila Pa 1976), 1990, 15(2):133-136. [24]

Liebenson C, Karpowicz AM, Brown SH, et al. The active straight leg raise test and lumbar spine stability[J]. PM R, 2009, 1(6):530-355.

[25]

Hu H, Meijer OG, van Dieen JH, et al. Is the psoas a hip flexor in the active straight leg raise?[J]. Eur Spine J, 2011, 20(5):759-765.

[26] Santaguida PL, McGill SM. The psoas major muscle: a three-dimensional geometric study[J]. J Biomech, 1995, 28(3):339-345. [27]

Yoshio M, Murakami G, Sato T, et al. The function of the psoas major muscle: passive kinetics and morphological studies using donated cadavers[J]. J Orthop Sci, 2002, 7(2):199-207. [28]

Teyhen DS, Williamson JN, Carlson NH, et al. Ultrasound characteristics of the deep abdominal muscles during the active straight leg raise test[J]. Arch Phys Med Rehabil, 2009, 90(5):761-767. [29]

Hodges P. Transversus abdominis: a different view of the elephant[J]. Br J Sports Med, 2008, 42(12):941-944. [30]

Allison GT, Morris SL, Lay B. Feedforward responses of transversus abdominis are directionally specific and act asymmetrically: implications for core stability theories[J]. J Orthop Sports Phys Ther, 2008, 38(5):228-237.

[31] Saunders SW, Schache A, Rath D, et al. Changes in three dimensional lumbo-pelvic kinematics and trunk muscle activity with speed and mode of locomotion[J]. Clin Biomech (Bristol, Avon), 2005, 20(8):784-793. [32]

Hu H, Meijer OG, Hodges PW, et al. Understanding the Active Straight Leg Raise (ASLR): an electromyographic study in healthy subjects[J]. Man Ther, 2012, 17(6):531-537.

因篇幅问题不能全部显示,请点此查看更多更全内容