旋转体绕y轴旋转一周的体积公式可以用下面的式子来定义:
V=π∫[a,b]{(f(x))²dx}
其中a和b是通过周长弧长来定义的,比如说绕y轴旋转一周,则a=0,b=2π。
f(x)指的是旋转体的函数的x的函数值,如果旋转体是一个抛物线,比如y=x²,那么f(x)就是x²。此外,所有的旋转体函数都要求满足以下两个条件:其一,所有的旋转体函数都要求至少是连续的;其二,所有的旋转体函数都要求在定义域内是连续可微的,也就是说,针对每一点都要有f'(x)存在。
有了这个公式,我们就可以用它来计算任意给定的旋转体绕y轴旋转一周的体积了。比如说,如果
f(x)=x3,
则V=π∫[0,2π]{(x3)²dx}=60π
再比如说,如果
f(x)=sin x,
则V=π∫[0,2π]{(sin x)²dx}=4π
从上面的例子可以看出,不论旋转体的函数形式是什么,都可以用同样的公式来计算出绕y轴旋转一周的体积。
因篇幅问题不能全部显示,请点此查看更多更全内容