您的当前位置:首页正文

开题报告-耿延顺

2024-05-10 来源:意榕旅游网


毕业设计(论文)材料之二(2)

本科毕业设计(论文)开题报告

题目: 纺粘工艺参数对非织造织物性能的影响

课 题 类 型: 设计□ 实验研究 论文□ 学 生 姓 名: 耿 延 顺 学 号: 3100307137 专 业 班 级: 非 织 造101 学 院: 纺织服装学院 指 导 教 师: 杨 莉 开 题 时 间: 2014.3.26

201 4年 3月 26 日

一、本课题的研究意义、研究现状和发展趋势

在非织造发展史中,纺粘法在上个世纪得到了快速的发展,其中在欧美和日本纺粘法生产工艺得到了发展的高峰。在纺粘法中不同原料和不同的工艺参数都对所制造出布的性能具有很大影响。通过控制一个变量保证其他量不变,可以测试出不同参数对布的不同影响。

纺粘法是20世纪40-50年代商业化的合成纤维长丝纺丝工序的延续,它是将合成纤维的纺丝技术、非织造布的成网和网结技术相结合的一种技术。50年代初,美国海军实验室建立了一台小型熔融挤出机,将熔融后的聚合物从喷丝孔中挤出,形成细度很细的长丝,然后利用热空气吹送到成网帘上,使纤维粘结成网。后来,随着化学纤维技术的发展,50年代末,德国。Freudenberg公司和美国Dupont公司又开始对纺粘法非织造布技术进行研究。到60年代,美国Dupont公司申请专利,60年代中期才开始工业化生产。20世纪60年代末到70年代初,纺粘法非织造布技术得到了发展。德国Reifenhauser公司采用整体横式的文丘里拉伸器,使纺粘法非织造布的质量有了一个较大的提高,工业化生产程度也得到了很大的进步以后,美国Ason公司将熔喷技术应用到纺粘技术中,由于采用特殊结构的拉伸器,使得纺粘法非织造布技术有了更大的发展。

我国于 1986 年开始引进纺粘法生产 技术和设备, 在20世纪90年代初期还仅有 3 条产线, 到2004年年中, 我国纺粘法非织造布生产线已达185 条, 其中我国产的纺粘设备达到147 条。2005 年, 我国的涤纶纺粘法生产线有15条, 年生产能力达到 54.4 kt。虽然在纺粘法非织布生产能力方面, 我国居世界第二位, 是一个纺粘大国,但是我们的技术水平除了新引进的设备外, 大多数是 20 世纪 90 年代初期的国际水平,与国外先进技术有一定差距。

目前,熔喷和纺粘的多喷头复合技术、双组分等差别化纤维纺丝技术的出现,使纺粘法非织造布技术带来了更加广阔的应用前景。外国多数国家的纺粘技术已经非常成熟,我国正处于发展阶段,处于上升期。在未来的发展中我国的纺粘技术将逐渐缩小与世界的差距,整个纺粘界的技术将进一步提升。

二、论文课题研究内容

第一部分主要介绍纺粘法的产生和其早期发展。讲述纺粘法是如何一步一步的发展起来的,介绍其目前的发展规模和预计未来纺粘法在无纺行业中的发展地位和发展趋势。

第二部分主要介绍整个纺粘工艺的工艺路线,详细的介绍每个工艺环节所涉及到的机器,以及相关参数。介绍每个机器的具体应用和机器对应的参数对非织造布的影响。比如涉及的参数有:计量运转、单体运转、冷风运转,成网速度、轧辊的温度等。详细的介绍了没一个部件和它对应的作用。

第三部分论文主要是介绍工艺参数对布影响的实际体现。通过所获得产品对其一些布的特有性能做测量,从而得出直观的结论。测量它的拉伸、断裂、顶破、亲水等性能,绘制成表格从而直观体现纺粘法工艺参数对非织造布性能的影响。

三、研究方案及工作计划

收集资料 选题背景

研究意义 纺粘工艺的书面流程概论 掌握工厂的生产工艺路线 相关理论了解 纺粘法的现实操作步骤概述 前往工厂的实际学习和了解并记录相关的工艺参数 掌握纺粘机器,了解工作原理 回校后经实验室做试验得出相关数据并整理写出论文 论文工艺路线

四、课题进度计划:

第一阶段:资料收集、学习相关知识、实习报告、确立论文的基本框架和内容 第二阶段:开题报告的撰写和实验所涉及原材料的准备。

第三阶段:在实验室经行布料测试并收集实验数据。

第四阶段:据所学知识将收集的数据进行汇总、分析编写论文、中期检查进度报告、对

中期报告中涉及的问题进行补充、修改提交初稿、对论文进行最后修改。 第五阶段:毕业答辩、提交毕业论文。

五、阅读的主要参考文献(不少于10篇,期刊类文献不少于7篇,应有一定数量的外文文献,至少附一篇引用的外文文献(3个页面以上)及其译文)

The influences of slot width of an attenuator on the properties of PET spunbonded fibers

Hong Wang ? Xiangyu Jin ? Haibo Wu Æ Baopu Yin

Received: 8 August 2006 / Accepted: 12 February 2007 / Published online: 26 June 2007 © Springer Science+Business Media, LLC 2007

Abstract In this paper, poly(ethylene terephthalate)

(PET) spunbonded fibers with tensile strength of 9.67 cN/dtex and diameter of 7 μm were produced in Nordson’s MicroFilTM Spunbond System with a positive attenuator pressure. The influences of the slot width of the attenuator on the properties of PET spunbonded fibers were studied, and Fourier transformation infrared spectrophotometry (FT-IR) and Wide-angle X-ray diffraction were applied to characterize the crystalline and orientation structure of PET spunbonded fibers as well. It was found the attenuator with positive air pressure is more advantageous to spin PET spunbonded fiber and the fiber becomes finer and its’ tensile strength becomes higher with the decrease of the slot width. The air speed in the attenuator was predicted as well.

Introduction

Spunbonding process is one in which polymers are extruded through spinnerets and the filaments are drawn by high velocity air in the attenuator. The continuous filaments are sucked onto the running web and forms nonwovens [1, 2]. Spunbonded nonwovens are developing very quickly with its’ excellent properties and high process efficiency. Spunbonded fibers are drawn by high velocity air with positive or negative pressure in the spunbonding process, in comparison with fibers drawn by godet in the high-speed spinning process [3, 4]. The properties of PET fibers are strongly influenced by the drawing process and it is not very easy to produce PET spunbonded fibers in the spunbonded nonwoven system with negative attenuatorm pressure. Nordson’s MicroFilTM Spunbond System with a positive attenuator pressure makes it possible to produce PET spunbonded nonwovens with excellent properties.

A few papers have investigated the drawing process of high velocity air with negative pressure, such as ‘‘Reiconfil’’ spunbonding process [5–7], but there is few report about the drawing process with positive air pressure. In this paper, the influences of the slot width of the attenuator with positive pressure on the properties of PET spunbonded fibers were studied.

Experimental

Preparation of PET spunbonded fibers

In this paper, PET spunbonded fibers were produced in Nordson’s MicroFilTM Spunbond System with different slot width of the attenuator. The normal inherent viscosity of PET resin is 0.65 dL/g. The processing conditions are presented in Table 1. Table 1 Processing conditions of PET spunbonded fibers

Process Sample 1 Sample 2 Pressure of the attenuator (MPa) 0.24 0.24 Spinning temperature (_C) 290 290 Width of the slot (mm) 5 2

Measurements

Equatorial X-ray diffraction patterns were obtained by a Rigaku D/Max-BR diffractometer with Cu-Kα radiation (k = 1.54 Å ) at 40 KV. The crystalline orientations (fc) of the samples were estimated by the azimuthal intensity distribution of well-resolved

wide-angle X-ray reflection lines from (100), (010), and (110) planes and were written as follows [8]: where B is the half-width of the intensity distribution on the (100), (010) and (110) planes on the equator of the two amples.

The polarized Fourier transform infrared (FT-IR) spectra of sample 1 and sample 2 with electric vector parallel and vertical to the draw direction were obtained using a

NEXUS-670 (Nicolet Corp.) spectrometer in the spectral region of 4,000–350 cm–1.

Tensile properties were measured using a YG (B) 003A tensile machine with a 20-mm length of monofilament at a crosshead speed of 60 mm/min. The tenacity was obtained by averaging 20 trials of the tensile test for each sample.

Results

Mechanical properties of PET spunbonded fibers

Table 2 showed the fineness and tensile properties of PET spunbonded fibers. It could be found that PET spunbonded fibers produced in this paper were very fine and had high tensile strength. The diameters of sample 1 and sample 2 were 10.5 and 7 lm, respectively. However, the minimum diameter of PP under Reifenhauser standard conditions is only about 8 lm (It is easier to make PP fibers with finer diameter than PET). The tensile strengths of sample 1 and sample 2 are 6.43 and 9.67 cN/dtex, respectively. It is suggested that PET spunbonded fibers have better mechanical properties with the decrease of the slot width.

Generally speaking, the tensile strength of PET fibers increases with the increase of crystallinity and orientation. Therefore, X-ray diffraction and FT-IR were used to investigate the crystalline and orientation structure of PET spunbonded fibers. Table 2 Fineness and tensile properties of PET spunbonded fibers

Diameter (lm) Strength (cN/dtex) Elongation rate (%)

Sample 1 10.5 6.43 84.3 Sample 2 7.0 9.67 81.2

Crystalline and orientation structure of PET spunbonded fibers by X-ray diffraction

It is reported that PET can be an amorphous structure or crystalline structure [9]. The principal X-ray diffraction peaks of PET fibers are near 2θ= 17.5°, 2θ = 22.5°, and 2θ= 25.5° with CuKα, while that of amorphous structure is near 2θ= 21.3° with CuKa. Figure 1 showed the WAXD intensity curves for sample 1 and sample 2.

There was only a broad peak near 2θ= 21.3° in the WAXD intensity curves for sample 1. With the decrease of the slot width, the peak was remarkably sharpened and

three peaks near 2θ= 17.5°, 2θ= 22.5°, and 2θ= 25.5° were observed for PET crystalline structure. The crystallinity of the samples was estimated by resolving contributions from amorphous and crystalline peaks. On the other hand, the crystalline orientations (fc) of the samples were estimated by the azimuthal intensity distribution of well-resolved wide-angle X-ray reflection lines from (100), (010), and (110) planes. It was found the crystallinities of sample 1 and sample 2 were 32.5% and 35.6%, and the orientations of crystalline of sample 1 and sample 2 were 74.5% and 80.6%, respectively. This showed that sample 2 had perfect crystal structure and its’ crystallinity and orientations of crystalline were higher than that of sample 1, and this might be the reason why the tensile strength of sample 2 was higher than that of sample 1.

Conformation and orientation structure of PETspunbonded fibers by FT-IR

Because PET spunbonded fibers produced in this paper are very fine, it is very difficult to detect their overall molecular orientation structure by sound velocity method or polarized light microscope [10]. Therefore, FT-IR was used to analyze orientation structure of PET spunbonded fibers indirectly [11].

On the FT-IR spectra of PET fibers, the band at 848 and 899 cmˉ¹ are assigned to trans and gauche conformations of ethylene glycol segment of PET molecular chain. The band at 1578 cmˉ¹ is assigned to the symmetric stretching of the phenylene ring, and the band at 875 cmˉ¹ is assigned to the out-of-plane ring C–H ring bending. These two bands have strong dichroic characteristics and can be used to calculate the overall molecular orientation and orientation of the chain in the amorphous [11]. On the other hand, the band at 1386 cmˉ¹ is assigned to in-plane-ring C–H bending and only appears when the crystalline of the sample is very high. The polarized FT-IR spectra of sample 1 and sample 2 with electric vector parallel and vertical to the draw direction were shown in Figs. 2 and 3.

It could be found that the band at 1386 cmˉ¹ appeared on Figs. 2 and 3, which means that sample 1 and sample 2 all had high crystalline content. Thus, the FT-IR spectral result is consistent with the WAXD result. In order to investigate the orientation structure of PET spunbonded fibers, the bands at 1578 and 875 cmˉ¹ were selected to calculate the overall molecular orientation (fo) and orientation of the chain in the amorphous (fa), respectively.

It is well known that the Ratio of Dichroism (R) ofpolymer fibers can be written as follows [11]:

where Aǁ is the intensity of the band at 1578 or 875 cmˉ¹ on the parallel polarized FT-IR spectrum, and A﬩ is the intensity of the band at 1578 or 875 cmˉ¹ on the vertical polarized FT-IR spectrum.

The Function of Orientation f (fo or fa) can be written as follows [11]:

where a is the angle of the transition moment of a vibration mode and the PET molecular chain (a of 1578 and 875 cmˉ¹ are 0°and 85°, respectively). The results were shown in Tables 3 and 4.

It could be found from Table 3 that the overall orientations of samples 1 and 2 were 0.03 and 0.43, respectively. Table 4 showed that the orientations of the chain in the amorphous of samples 1 and 2 were 0.03 and 11.2, respectively. It was suggested that the overall orientation and orientation in the amorphous of sample 2 were higher

than those of sample 1 and this might result in the higher tensile strength of sample 2. It also could be found that there was a good correlation between X-ray diffraction curves and FT-IR spectra.

Table 3 The overall molecular orientation (fo) of PET according to band at 875 cmˉ¹

Table 4 Orientation of the chain in the amorphous (fa) of PET according to band of 1578 cmˉ¹ Prediction of the air speed in the attenuator

From the above analysis, it was found that the tensile strength of PET spunbonded fibers increases with the increase of crystallinity and orientation of PET spunbonded fibers. The crystalline and orientation of PET spunbonded fibers were induced by the drawing of the high-speed air in the slot of the attenuator. Therefore, it is necessary to study the air distribution in the slot of the attenuator. The slot of

the attenuator in Nordson system is over 3 mm long and the air field in the slot is very complicated. Hence, the air distribution in the slot can only be simulated by sophisticated computer software combined with apparatus/process experience. In this paper, the air speed in the attenuator when sample 1 and sample 2 was produced was predicted.

It is well known there is only a broad peak on the X-ray curve of PET fibers produced with a drawing speed lower than 4,000 m/min. The peak becomes sharper and will split into several peaks with the increase of the drawing speed, and three obvious diffraction peaks

corresponding to PET crystalline structure will appear near 2θ= 17.5°, 2θ= 22.5°, and 2θ= 25.5° when the drawing speed is about 5,500 m/min [9]. The drawing speed of PET spunbonded fibers is equivalent (or a little lower than) the air speed in the attenuator. Therefore, X-ray diffraction results could be used to predict the air speed in the attenuator. From the results of X-ray diffraction of PET spunbonded fibers, it could be predicted that the air speed in the attenuator

was not higher than 4,000 m/min when the slot was 5 mm in width, while the air speed was about 5,500 m/min when the slot was 2 mm in width.

Conclusions

In this work, PET spunbonded nonwovens were produced in Nordson’s MicroFilTM Spunbond System with a positive attenuator pressure. The fineness and tensile properties of PET spunbonded fibers were tested, and X-ray diffraction and FT-IR were applied to characterize the crystalline and orientation structure of PET spunbonded fibers as well. It was found that the attenuator with positive air pressure is more advantageous to spin PET spunbonded fibers with excellent properties and the slot width has a big influence on the properties of PET spunbonded fibers. PET spunbonded fiber becomes finer and its’ tensile strength becomes higher with the decrease of the slot width. It was predicted that the air speed in the attenuator when the slot width is 5 or 2 mm is about 4,000 or 5,500 m/min, respectively.

Acknowledgements

The authors thank for Yaolong Spun-bond

Technology Co., Ltd for their assist to make the two samples on their production line (Nordson’s MicroFilTM Spunbond System). References

1. Zhang D, Bhat G, Malkan S, Wadsworth L (1994) In: Proc Forth Annual TANDEC Conference on Nonwovens, November

2. Zhang D, Bhat G, Malkan S, Wadsworth L (1998) Textile Res J 68:27

3. Ke QF, Jin XY (2004) In: Nonwovens, Donghua University Publishing Company, Shanghai, p 223

4. Hajji N, Spruiell JE, Lu FM, Malkan S, Richeson GC (1991) INDA J Nonwovens Res 4:16

5. Patel RM, Spruiell JE (1991) Polym Eng Sci 31:730

6. Zieminski KF, Spruiell JE (1988) J Appl Polym Sci 35:2223 7. Misra S, Spruiell JE, Richeson GC (1992) INDA J Nonwovens Res 4:13

8. Ziabicki A (1976) In: Fundamentals of fibre formation. Wiley and Sons, New York, p 186

9. Guo DS, Wang WK (2001) In: Polyest Fiber Science and Engineering. China’s Textiles Publishing Company, Beijing, p 64

10. Zhan HY (2005) In: Fiber Chemistry and Physics. Science Publishing Company, Beijing, p 143

11. Jiang Y, Guo FM, Sun L et al (2000) Spectroscopy Spectral Anal 20:665

中文翻译:

对PET性能衰减器的槽宽度的影响纺粘纤维

摘 要:在这篇文章中,抗拉强度为9.67cN/dtex和直径为7微米的聚对苯二甲酸乙

二醇酯(PET)的纺粘纤维是诺信MicroFilTM纺粘系统以积极的衰减器的压力的方法生产的。衰减器在PET纺粘纤维的特性是研究衰减器受槽宽度的影响以及傅立叶变换红外光谱(FT-IR)和广角X-射线衍射是适用于PET纺粘纤维表征结晶和取向的结构特征研究。减少槽的宽度被发现比正气压衰减器能更好的纺出具有更细和较高抗拉强度的PET纺粘纤维 。利用空气速度的衰减器被预测同样的具有很好效果。

绪 论:纺粘工艺是利用高速空气流的衰减器把聚合物通过喷丝头挤出,长丝被拉伸

的工艺。连续长丝被吸入到铺网帘上,从而形成非织造布。纺粘非织布的飞快发展是凭借其卓越的性能和较高的工艺效率。纺粘纤维通过纺粘法的正或负压力被高速气流牵伸出,由高速纺丝工艺纺成像光纤一样的细丝。PET纤维的特性由纺丝过程的强烈影响,这让具有负压力衰减器的纺粘非织造系统不是很容易产生PET纺粘纤维。诺信MicroFilTM纺粘系统具有正压力衰减器使得能够生产PET纺粘非织造布具有优异的性能。

除了对拉伸工艺与正压差几个报告,一些论文研究了高速空气拉丝工艺负压,如“ Reiconfil纺粘法”。在本文中,研究了正压衰减器的槽宽度对PET纺粘纤维的性能的影响。

实验

PET纺粘纤维的制备

在本文中,PET纺粘纤维利用诺信MicroFilTM纺粘系统与衰减器的不同槽的宽度生产而来。PET树脂的正常浓对数粘度为0.65分升/克。加工条件列于表1中。

过程 范例1 范例2 衰减器的压力(兆帕) 0.24 0.24 纺丝温度(℃) 290 290 槽的宽度(毫米) 5 2

表一、PET纺粘纤维的加工条件

尺 寸

赤道X射线衍射图在40千伏的条件下被Rigaku 利用D / max-BR衍射仪用Cu-Ka辐射(K =1.54°)获得。样品的结晶取向(Fc)是由良好分辨的宽角X-射线反射线从(100)方位的强度分布的估计,(010)和(110)晶面和被写成如下:

其中B是半宽在(100)中的强度分布的,(010)和(110)平面上的两个样品的赤道。

极化傅立叶变换样品1和样品2的红外光谱(FT-IR)光谱NEXUS-670(美国Nicolet公司)光谱仪中的4,000-350-1的光谱区通过电矢量平行和垂直于拉伸方向使用得到的。 拉伸性能是使用一YG(B)003A拉伸机与单丝的以60毫米/分钟的十字头速度20毫米长度测定。是通过平均拉伸试验每个样品的20次试验中得到的韧度。

结 果

PET纺粘纤维的机械性能

表2表明PET纺粘纤维的纤度和拉伸性能。可以发现的是,本文所产生的PET纺粘纤维很细,并具有高的拉伸强度。样品1和样品2的直径分别为10.5和7微米。然而,Reifenhauser公司标准条件是聚丙烯的最小的直径只有约8微米(这是比较容易使聚丙烯纤维与细径比PET)。样品1和样品2的拉伸强度分别为6.43和9.67 CN/分特。有人建议,减小槽宽度能使PET纺粘纤维具有更好的机械性能。

直径(微米) 强度(CN/分特) 伸长率(%)

范例1 10.5 6.43 84.3 范例2 7.0 9.67 81.2

表二、PET纺粘纤维细度和拉伸性能

一般来说,PET纤维的拉伸强度提高因为结晶度和取向的增加。因此,X-射线衍射和FT-IR来用于调查PET纺粘纤维的结晶性和取向结构。 PET纺粘纤维的结晶和取向结构由X射线衍射测得

据报道,PET可以是非晶结构或结晶结构。PET纤维的主要X-射线衍射峰用CuKα表示分别接近2θ=17.5度,2θ=22.5度,和2θ=25.5度,而非晶态结构的近2θ =21.3度。图1显示了广角X射线衍射强度曲线,样品1和样品2。

图一、广角X射线衍射曲线的PET纺粘纤维

对样品1在广角X射线衍射强度曲线有近2θ = 21.3度只有一个宽峰,随着沟槽宽度的减小,峰被显着地消弱从而利用2θ= 17.5度, 2θ= 22.5度 ,和2θ= 25.5度这三个峰观察到用于PET的结晶结构。样品的结晶的无定型估计通过分解结晶峰曲线形状得到。另一方面,结晶取向的样品(Fc)通过解决广角X-射线反射的(100)线的方位角的强度分布, ( 010 )和( 110 )晶面进行了估计。我们发现样品1和样品2的结晶度分别为32.5%和35.6 %,而样品1和样品2的结晶的取向分别为74.5%和80.6 %之间。这表明,样品2具有完美的晶体结构和它的结晶度和结晶的取向均高于样品1的,这可能是为什么样品2的拉伸强度比样品1的更高的原因。

PET纺粘纤维用FT-IR的构象和取向结构

因为在本文中所产生的PET纺粘纤维是很细的,这使得利用声速的方法或偏振光显微镜检测其整体分子取向结构是非常困难的。因此,间接采用FT-IR来分析PET纺粘纤维的取向结构。

在PET纤维的红外光谱中,在1/848和1/899厘米处被分配到PET分子链的乙二醇部分是为反式和扭式构象。在1/1578厘米处的频带被分配的是对称伸缩亚苯基环,并且频带在1/875厘米处的分配到环外的是平面的C-H环弯曲。这两个波段具有强二色性的特征,并且可以在无定形德情况下用于计算总的分子取向和链轮的取向 。另一方面,频带1/1386厘米处的分配到平面型环的C-H弯曲振动,只有当样品的结晶性是非常高的才会显示。样品1和样品2与电矢量平行和垂直于拉伸方向的偏光的红外光谱示于图2和3中。

图2、样品1的偏振红外光谱 图3、样品2的偏振红外光谱 可以发现,该带1/1386厘米出现在图2和3,这意味着样品1和样品2各具有高结晶性的特性。因此,红外光谱结果与用广角X射线衍射的结果是一致的。为了研究PET纺粘纤维,在无定形频带的取向结构在1/1578和1/875厘米之间被选择分别来计算整体的分子取向(Fo)和链的取向(Fa)。

它是众所周知的二色(R)聚合物纤维的比率可以写成如下:

R=Aǁ/A﬩

其中Aǁ是频带在1/1578或1/875厘米上的平行偏振光的红外光谱的强度,且A﬩是频带在1/1578或1/875厘米上的垂直极化红外光谱的强度。

取向功能的F(Fo或Fa)可以写成如下的:

其中a是一个振动模式的转换时刻与PET分子链(a分别是1/1578和1/875厘米,0度到85度的取值的角度)。它的结果示于表3和表4。

Aǁ A﬩ R Fo

示例1 9.83 7.5 0.91 0.03 示例2 2.34 1.31 1.79 0.43 表3、根据频带PET(Fo)在1/875厘米的整体的分子取向 Aǁ A﬩ R Fa

示例1 12.06 10.94 1.1 0.03 示例2 3.87 2.81 1.38 11.2

表4、链中的PET根据1/1578厘米波段的无定形(Fa)的方向

可以发现表3中试样1和2的总体方向分别为0.03和0.43。表4表明,该链中的取向非晶试样1和2分别为0.03和11.2。有人提出,样品2无定形的总体定位和方向均较高样品1,这可能会导致样品2具有较高拉伸强度,也可以发现,X-射线衍射曲线和红外谱之间有很好的相关。

空气流速衰减器中的预测

从上面的分析,我们发现PET纺粘纤维的拉伸强度与结晶度会随着PET纺粘纤维取向的增加而增加。PET纺粘纤维的结晶性和取向是由高速气流中衰减器的槽引导决定的。因此,有必要研究空气分配中的衰减器的槽。在诺信系统中的衰减器的槽是超过3毫米长和空气流场非常复杂的。因此,在插槽中的气流分布只能通过结合设备/工艺经验,先进的计算机软件模拟。在本文中,空气中的速度一定时,样品1和样品2中产生的衰减进行了预测。

众所周知拉伸速度超过4000米/分钟制造的PET纤维的X-射线曲线上只有一个宽峰。峰变得更清晰,随着拉伸速度的增加将分裂成几个峰,当拉伸速度为约5500米/分钟时,对应于PET的结晶结构三个明显的衍射峰的附近会出现2θ=17.5度,2θ=22.5度,和2θ=25.5度。PET纺粘纤维的拉伸速度是相等(或低于一点点)与空气速度衰减器。因此,X-射线衍射的结果可以被用来预测在空气中的速度衰减。从PET纺粘纤维的X-射线衍射的结果,它可以被预测,空气流速的衰减器是不是在超过4000米/分钟时的间隙为5毫米的宽度,而在空气速度为约5500米/分钟时,槽为2毫米宽。

结 论

在这项工作中,诺信MicroFilTM纺粘系统以积极的衰减器的压力生产了PET纺粘非织造布。PET纺粘纤维的纤度和拉伸性能进行了测试,以及X-射线衍射和红外光谱分别适用于PET纺粘纤维的结晶性和取向结构的表征。人们发现,与正气压衰减器是更有利的是纺PET纺粘纤维具有优良的性能和槽宽度对PET纺粘纤维的性能有很大的影响。 PET纺粘纤维变细以及它的拉伸强度变高与槽宽度的减小有关。据预测,在空气中的速度衰减时的槽宽度为5或2mm生产速度大约为4,000或5,500米/分钟。

致 谢:作者感谢耀龙纺粘科技有限公司为他们的协助,让他们的生产线(诺信MicroFilTM纺粘系统)提供两个样本。 六、主要参考资料

1、王延熹.非织造布生产技术[M].上海:中国纺织大学出版社,1998

2、沈志明,胡杰,陈忠宽.新型非织造布技术[M].北京:中国纺织出版社,1998

3、R. K. Dh arm ad h ikary. Therm al Bond ing ofNonwoven Fab rics[J],Text ile Progress,1995,(2):1~23。

4、郭秉臣,非织造布学[M],北京:中国纺织出版社,2002

5、王延熹主编,非织造布生产技术[M海:中国纺织大学出版社,1998

6、储才元、李作攀,热粘合非织造布的工艺参数及其性能模拟测试[ J] ,非织造布,1998,(1):40.

7、赵广兴、严灏景,热轧非织造布粘合结构的形成[J]中国纺织大学学报,1992, (6):3~6。

8、 毛志伟,朱远胜. 我国纺粘非织造布的差距及对策研究[J]. 纺织导报,2008,(12):104~105

9.、周宏晖、高兴元,热轧点粘合薄型聚酷非织造粘合衬基布的研制[J],产业用纺织品,2002,(4):13~15

10、倪冰选,焦晓宁. 纺粘水刺复合非织造布的发展概况[J]. 产业用纺织品,2010(1):1~4

11、J Mater,The influences of slot width of an attenuator on the properties of PET spunbonded fibers, Sci 2007 (42):8006–8009

指导教师意见:

指导老师(签字): 201 年 月 日

因篇幅问题不能全部显示,请点此查看更多更全内容