您的当前位置:首页正文

Centre for Advanced Study in Mathematics

2024-04-24 来源:意榕旅游网
n-Colorpartitiontheoreticinterpretationsof

somemockthetafunctions

A.K.Agarwal∗

CentreforAdvancedStudyinMathematics

PanjabUniversityChandigarh-160014,IndiaE-mail:aka@pu.ac.in

Submitted:Mar13,2004;Accepted:Sep14,2004;Published:Sep20,2004MRSubjectClassifications(2000):Primary05A15,Secondary05A17,11P81.

Abstract

Usingn-colorpartitionsweprovidenewnumbertheoreticinterpretationsoffourmockthetafunctionsofS.Ramanujan.

1Introduction

InhislastlettertoG.H.Hardy,S.Ramanujanlisted17functionswhichhecalledmockthetafunctions.Heseparatedthese17functionsintothreeclasses.Firstcontaining4functionsoforder3,secondcontaining10functionsoforder5andthethirdcontaing3functionsoforder7.Watson[8]foundthreemorefunctionsoforder3andtwomoreoforder5appearinthelostnotebook[7].Mockthetafunctionsoforder6and8havealsobeenstudiedin[3]and[4],respectively.Forthedefinitionsofmockthetafunctionsandtheirorderthereaderisreferredto[6].Theobjectofthispaperistoprovidenewnumbertheoreticinterpretationsofthefollowingmockthetafunctions:

Ψ(q)=

∞󰀁m=1

qm

2

(q;q2)m

Φ0(q)=

∞󰀁m=0

2

,(1.2)(1.3)

qm(−q;q2)m,

and

Φ1(q)=

where

∞󰀁m=0

q(m+1)(−q;q2)m,

2

(1.4)

(a;q)n=

∞󰀂(1−aqi)i=0

Theorem3.Forν≥0,letA3(ν)denotethenumberofn-colorpartitionsofνsuchthatonlythefirstcopyoftheoddpartsandthesecondcopyoftheevenpartsareused,thatis,thepartsareofthetype(2k−1)1or(2k)2,theminimumpartis11or22,andtheweighteddifferenceofanytwoconsecutivepartsis0.Then,

∞󰀁ν=0

A3(ν)qν=Φ0(q).

(1.7)

Theorem4.Forν≥1,letA4(ν)denotethenumberofn-colorpartitionsofνsuchthat

onlythefirstcopyoftheoddpartsandthesecondcopyoftheevenpartsareused,theminimumpartis11,andtheweighteddifferenceofanytwoconsecutivepartsis0.Then,

∞󰀁ν=1

A4(ν)=Φ1(q).

(1.8)

Remark.Weremarkthatthereare160n-colorpartitionsof8butonlyonepartition

viz.,62+22isrelevantforTheorem3andnoneisrelevantforTheorem4.Outof859n-colorpartitionsof11,noneisrelevantforTheorems3-4.Among18334n-colorpar-titionsof17onlytwoviz.,91+62+22and82+51+31+11satisfytheconditionsofTheorem3,whereasthelonepartition82+51+31+11satisfiestheconditionsofTheoem4.Followingthemethodof[1],wegiveinournextsectionthedetailproofofTheorem1andtheshortestpossibleproofsfortheremainingtheorems.InthesequelAi(m,ν),(1≤i≤4),willdenotethenumberofpartitionsofνenumeratedbyAi(ν)intomparts,andweshallwrite∞∞

fi(z,q)=

󰀁󰀁

ν=0m=0

Ai(m,ν)zmqν.

(1.9)

Inourlastsectionweillustratehowournewresultscanbeusedtoyieldnewcombinatorialidentities.

2Proofs

ProofofTheorem1.WesplitthepartitionsenumeratedbyA1(m,ν)intotwoclasses:(1)thosethatcontain11asapart,andthosethatcontainkk,(k>1)asapart.Followingthemethodof[1]itcanbeeasilyprovedthatthepartitionsinClass(1)areenumeratedbyA1(m−1,ν−2m+1)andinClass(2)byA1(m,ν−2m+1),andso

A1(m,ν)=A1(m−1,ν−2m+1)+A1(m,ν−2m+1).

From(1.9),wehave

f1(z,q)=

∞󰀁∞󰀁ν=0m=0

(2.1)

A1(m,ν)zmqν.

(2.2)

SubstitutingforA1(m,ν)from(2.1)in(2.2)andthensimplifyingweget

f1(z,q)=zqf1(zq2,q)+q−1f1(zq2,q).

theelectronicjournalofcombinatorics11(2004),#N14

(2.3)

3

Settingf1(z,q)=(2.3),weseethat

∞󰀁n=0

αn(q)zn,andthencomparingthecofficientsofznoneachsideof

αn(q)=

q2n−1

(q;q2)n

Therefore

f1(z,q)=

2

.(2.5)

∞󰀁qnznn=0

(q;q2)n

=Ψ(q).

ThiscompletestheproofofTheorem1.ProofofTheorem2.

TheproofissimilartothatofTheorem1,henceweomitthedetailsandgiveonly

theq-functionalequationusedinthiscase.

f2(z,q)=zq2f2(zq4,q)+q−1f2(zq,q).

ProofofTheorem3.

WesplitthepartitionsenumeratedbyA3(m,ν)intotwoclasses:(1)thosethatcontain11asapart,and(2)thosethatcontain22asapart.ByusingtheusualtechniqueweseethatthepartitionsinClass(1)areenumeratedbyA3(m−1,ν−2m+1)andinClass(2)byA3(m−1,ν−4m+2).Thisleadstotheidentity

A3(m,ν)=A3(m−1,ν−2m+1)+A3(m−1,ν−4m+2).

Using(2.8)onecaneasilyobtainthefollowingq-functionalequation

f3(z,q)=zqf3(zq2,q)+zq2f3(zq4,q).

theelectronicjournalofcombinatorics11(2004),#N14

(2.7)

(2.8)

(2.9)

4

Settingf3(z,q)=

∞󰀁n=0

βn(q)zn,andnotingthatf3(0,q)=1,wecaneasilycheckby

coefficientcomparisonin(2.9)that

βn(q)=qn(−q;q2)n.

Therefore,

f3(z,q)=

Now

∞󰀁ν=0

∞󰀁n=0

22

(2.10)

qn(−q;q2)nzn.

A3(m,ν))qν

(2.11)

A3(ν)q

ν

=

∞󰀁∞󰀁

(

ν=0m=0

=f3(1,q)=

∞󰀁n=0

qn(−q;q2)n

2

=Φ0(q).

ThisprovesTheorem3.ProofofTheorem4.

ThepartitionsenumeratedbyA4(m,ν)arepreciselythosepartitionswhichbelongto

Class1ofthepreviouscase.Therefore,

A4(z,ν)=A3(m−1,ν−2m+1).

(2.12)

UsingEquations(2.8)and(2.12),onecaneasilyobtainthefollowingq-functionalequation:

f4(z,q)=f3(z,q)−zq2f3(zq4,q).

Settingf4(z,q)=

∞󰀁n=0

(2.13)

γn(q)zn,andthencomparingthecoefficientsofznoneachsideof

γn(q)=βn(q)−βn−1(q)q4n−2

=qn(−q;q2)n−1.

2

(2.13),weseethat

Thisimpliesthat

f4(z,q)=

∞󰀁n=1

qn(−q;q2)n−1zn.

2

theelectronicjournalofcombinatorics11(2004),#N14

5

Now

∞󰀁ν=0

A4(ν)q

ν

=

∞󰀁∞󰀁

(

ν=0m=0

A4(m,ν))qν

=f4(1,q)==

∞󰀁n=1

∞󰀁n=0

qn(−q;q2)n−1q(n+1)(−q;q2)n

2

2

=Φ1(q).

ThiscompletestheproofofTheorem4.

3Newcombinatorialidentities

OurTheorems1-4canbecombinedwiththeknownnumbertheoreticinterpretationsof(1.1)-(1.4)toyieldnewcombinatorialidentities.Forexample,Theorem1inviewoftheknownpartitiontheoreticinterpretationofΨ(q)givenaboveinSection1givesthefollowingresult:

Theorem5.Forν≥1,thenumberofn-colorpartitionsofνsuchthatevenpartsappearwithevensubscriptsandoddwithodd,forsomek,kkisapart,andtheweighteddifferenceofanytwoconsecutivepartsis0equalsthenumberofordinarypartitionsofνintooddpartswithoutgaps.

References

1.A.K.Agarwal,Rogers-Ramanujanidentitiesforn-colorpartitions,J.NumberThe-ory28(1988),299–305.

2.A.K.AgarwalandG.E.Andrews,Rogers-Ramanujanidentitiesforpartitionswith“NcopiesofN”,J.Combin.TheorySer.A45,(1987),40–49.

3.G.E.AndrewsandD.Hickerson,Ramanujan’s”Lost”NotebookVII:Thesixthor-dermockthetafunctions,Adv.Math.,89(1991),60–105.

4.B.GordonandR.J.McIntosh,Someeightordermockthetafunctions,J.LondonMath.Soc.(2)62(2000),321–335.

5.N.J.Fine,BasicHypergeometricSeriesandApplications,MathematicalSurveysandMonographs,No.27,AMS,(1988)

6.G.H.HardyandE.M.Wright,AnIntroductiontotheTheoryofNumbers,FifthEdition,OxfordUniversityPress(1978).

7.S.Ramanujan,TheLostNotebookandotherUnpublishedPapers,NarosaPublish-ingHouse,NewDelhi,1988

8.G.N.Watson,Thefinalproblem:anaccountofthemockthetafunctions,J.LondonMath.Soc.,11(1936),55–80.

theelectronicjournalofcombinatorics11(2004),#N14

6

因篇幅问题不能全部显示,请点此查看更多更全内容