%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% % % SEP: A Stable Election Protocol for clustered % % heterogeneous wireless sensor networks %
% %
% (c) Georgios
Smaragdakis % % WING group, Computer Science Department, Boston University % % %
% You can find full documentation and related information at: % %
http://csr.bu.edu/sep %
% %
% To report your comment or any bug please send e-mail to: % %
gsmaragd@cs.bu.edu %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% This is the LEACH [1] code we have used. % % The same code can be used for FAIR if m=1 % % %
% [1] W.R.Heinzelman, A.P.Chandrakasan and H.Balakrishnan, %
% \"An application-specific protocol architecture for wireless % % microsensor
networks\" %
% IEEE Transactions on Wireless Communications, 1(4):660-670,2002 %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
clear;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
PARAMETERS %%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Field Dimensions - x and y maximum (in meters) xm=100; ym=100;
%x and y Coordinates of the Sink sink.x=0.5*xm; sink.y=0.5*ym;
%Number of Nodes in the field n=100
%Optimal Election Probability of a node %to become cluster head p=0.1;
%Energy Model (all values in Joules) %Initial Energy Eo=0.5;
%Eelec=Etx=Erx
ETX=50*0.000000001; ERX=50*0.000000001;
%Transmit Amplifier types Efs=10*0.000000000001; Emp=0.0013*0.000000000001; %Data Aggregation Energy EDA=5*0.000000001;
%Values for Hetereogeneity
%Percentage of nodes than are advanced m=0.1; %\\alpha a=1;
%maximum number of rounds rmax=9999
%%%%%%%%%%%%%%%%%%%%%%%%% END OF PARAMETERS %%%%%%%%%%%%%%%%%%%%%%%%
%Computation of do do=sqrt(Efs/Emp);
%Creation of the random Sensor Network figure(1); for i=1:1:n
S(i).xd=rand(1,1)*xm; XR(i)=S(i).xd;
S(i).yd=rand(1,1)*ym; YR(i)=S(i).yd; S(i).G=0;
%initially there are no cluster heads only nodes S(i).type='N';
temp_rnd0=i;
%Random Election of Normal Nodes if (temp_rnd0>=m*n+1) S(i).E=Eo; S(i).ENERGY=0;
plot(S(i).xd,S(i).yd,'o'); hold on; end
%Random Election of Advanced Nodes if (temp_rnd0 S(n+1).xd=sink.x; S(n+1).yd=sink.y; plot(S(n+1).xd,S(n+1).yd,'x'); %First Iteration figure(1); %counter for CHs countCHs=0; %counter for CHs per round rcountCHs=0; cluster=1; countCHs; rcountCHs=rcountCHs+countCHs; flag_first_dead=0; for r=0:1:rmax r %Operation for epoch if(mod(r, round(1/p) )==0) for i=1:1:n S(i).G=0; S(i).cl=0; end end hold off; %Number of dead nodes dead=0; %Number of dead Advanced Nodes dead_a=0; %Number of dead Normal Nodes dead_n=0; %counter for bit transmitted to Bases Station and to Cluster Heads packets_TO_BS=0; packets_TO_CH=0; %counter for bit transmitted to Bases Station and to Cluster Heads %per round PACKETS_TO_CH(r+1)=0; PACKETS_TO_BS(r+1)=0; figure(1); for i=1:1:n %checking if there is a dead node if (S(i).E<=0) plot(S(i).xd,S(i).yd,'red .'); dead=dead+1; if(S(i).ENERGY==1) dead_a=dead_a+1; end if(S(i).ENERGY==0) dead_n=dead_n+1; end hold on; end if S(i).E>0 S(i).type='N'; if (S(i).ENERGY==0) plot(S(i).xd,S(i).yd,'o'); end if (S(i).ENERGY==1) plot(S(i).xd,S(i).yd,'+'); end hold on; end end plot(S(n+1).xd,S(n+1).yd,'x'); STATISTICS(r+1).DEAD=dead; DEAD(r+1)=dead; DEAD_N(r+1)=dead_n; DEAD_A(r+1)=dead_a; %When the first node dies if (dead==1) if(flag_first_dead==0) first_dead=r flag_first_dead=1; end end countCHs=0; cluster=1; for i=1:1:n if(S(i).E>0) temp_rand=rand; if ( (S(i).G)<=0) %Election of Cluster Heads if(temp_rand<= (p/(1-p*mod(r,round(1/p))))) countCHs=countCHs+1; packets_TO_BS=packets_TO_BS+1; PACKETS_TO_BS(r+1)=packets_TO_BS; S(i).type='C'; S(i).G=round(1/p)-1; C(cluster).xd=S(i).xd; C(cluster).yd=S(i).yd; plot(S(i).xd,S(i).yd,'k*'); distance=sqrt( (S(i).xd-(S(n+1).xd) )^2 + (S(i).yd-(S(n+1).yd) )^2 ); C(cluster).distance=distance; C(cluster).id=i; X(cluster)=S(i).xd; Y(cluster)=S(i).yd; cluster=cluster+1; %Calculation of Energy dissipated distance; if (distance>do) S(i).E=S(i).E- ( (ETX+EDA)*(4000) + Emp*4000*( distance*distance*distance*distance )); end if (distance<=do) S(i).E=S(i).E- ( (ETX+EDA)*(4000) + Efs*4000*( distance * distance )); end end end end end STATISTICS(r+1).CLUSTERHEADS=cluster-1; CLUSTERHS(r+1)=cluster-1; %Election of Associated Cluster Head for Normal Nodes for i=1:1:n if ( S(i).type=='N' && S(i).E>0 ) if(cluster-1>=1) min_dis=sqrt( (S(i).xd-S(n+1).xd)^2 + (S(i).yd-S(n+1).yd)^2 ); min_dis_cluster=1; for c=1:1:cluster-1 temp=min(min_dis,sqrt( (S(i).xd-C(c).xd)^2 + (S(i).yd-C(c).yd)^2 ) ); if ( temp %Energy dissipated by associated Cluster Head min_dis; if (min_dis>do) S(i).E=S(i).E- ( ETX*(4000) + Emp*4000*( min_dis * min_dis * min_dis * min_dis)); end if (min_dis<=do) S(i).E=S(i).E- ( ETX*(4000) + Efs*4000*( min_dis * min_dis)); end %Energy dissipated if(min_dis>0) S(C(min_dis_cluster).id).E = S(C(min_dis_cluster).id).E- ( (ERX + EDA)*4000 ); PACKETS_TO_CH(r+1)=n-dead-cluster+1; end S(i).min_dis=min_dis; S(i).min_dis_cluster=min_dis_cluster; end end end hold on; countCHs; rcountCHs=rcountCHs+countCHs; %Code for Voronoi Cells %Unfortynately if there is a small %number of cells, Matlab's voronoi %procedure has some problems %[vx,vy]=voronoi(X,Y); %plot(X,Y,'r*',vx,vy,'b-'); % hold on; % voronoi(X,Y); % axis([0 xm 0 ym]); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% STATISTICS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % DEAD : a rmax x 1 array of number of dead nodes/round % DEAD_A : a rmax x 1 array of number of dead Advanced nodes/round % DEAD_N : a rmax x 1 array of number of dead Normal nodes/round % CLUSTERHS : a rmax x 1 array of number of Cluster Heads/round % PACKETS_TO_BS : a rmax x 1 array of number packets send to Base Station/round % PACKETS_TO_CH : a rmax x 1 array of number of packets send to ClusterHeads/round % first_dead: the round where the first node died % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 因篇幅问题不能全部显示,请点此查看更多更全内容