您的当前位置:首页正文

经验模型 扩散模型干燥橡胶片

2021-09-07 来源:意榕旅游网
JournalofFoodEngineering79(2007)330–343

www.elsevier.com/locate/jfoodeng

Choosinganappropriatedryingmodelforintermittent

andcontinuousdryingofbananas

R.Baini*,T.A.G.Langrish

DepartmentofChemicalEngineering,TheUniversityofSydney,NSW2006,Australia

Received24September2005;accepted27January2006

Availableonline5April2006

Abstract

Empiricalmodels,thediffusionmodelandtheconceptofacharacteristicdryingcurvehavebeenusedintheliteraturetodescribethedryingofbananas.Theiruseiscomparedhereforcontinuousandintermittentdrying,asinsolarkilns.Experimentswerecarriedoutinapilot-scalekilnwiththewetbulbtemperaturesetat40°Candanairvelocityof1.3msÀ1.Bananasweredriedcontinuouslyatdry-bulbtemperaturesof60and80°Candintermittentlyat60°C.Theaveragemoisturecontentsofthedriedbananaswerecomparedwiththosepredictedbyanempirical(Newton)modelandtheFickiandiffusionmodel.Aleastsquaresprocedurewasusedinfitting,inwhichthestandarderrorforthedifferencebetweenthemoisturecontentsfromtheexperimentaldataandeachofthedryingmodelswasminimized.Thefitteddryingconstantswerefoundtobe0.11hÀ1and0.09hÀ1forcontinuousandintermittentdrying,respectively.Thefittedacti-vationenergyandtheestimateddiffusioncoefficientwere13.4kJ/moland1.09·10À9m2/s,respectively.Thediffusionmodelwasfoundtofitthemoisturecontentsbetterthantheempiricalmodel.Thiswasshownbythestandarderrorsobtained,whichwere50%and88%lowerthanthoseobtainedinthefittingoftheempiricalmodelforcontinuousandintermittentdrying,respectively.Theanalysisofthedryingratesusingtheconceptofacharacteristicdryingcurveshowedthatthisconceptonlygaveareasonablefittingofmoisturecon-tentsforcontinuousdrying.Itwasalsofoundthatthesugarcontentofthebananasatdifferentdegreesofripenesshadaninsignificanteffectonthecharacteristicdryingcurve.Overall,theresultsofthisworksuggestthattheempiricalmodelandthecharacteristicdryingcurveareapplicablefordescribingthedryingkineticsofbananadriedcontinuouslybutnotintermittently.Ontheotherhand,thedif-fusionmodel,whichincludesthevariationofmoisturecontentandtemperaturethroughoutthebananainitssolution,describesthedry-ingkineticsofbananawellforbothcontinuousandintermittentdrying.Thismakesthediffusionmodelsuitableforpredictingtherelaxationprocessesthatoccurwhenthedryingconditionsareinterrupted,suchasinintermittentdrying.Ó2006ElsevierLtd.Allrightsreserved.

Keywords:Bananadryingkinetics;Continuousdrying;Intermittentdrying;Relaxationmoisturecontent

1.Introduction

Theworldproductionofbananasisincreasingalmosteveryyear(FAO,2005).Itreachedapproximately100mil-liontonnesin2004.Thissupplyofbananasandplantainsmakesthemthelargestquantityoffruitproducedintheworld(FAO,2005).However,thehighwatercontentofbananasmakesthemsusceptibletomouldgrowth.India,

Correspondingauthor.

E-mailaddresses:rbaini@chem.eng.usyd.edu.au(R.Baini),timl@chem.eng.usyd.edu.au(T.A.G.Langrish).

0260-8774/$-seefrontmatterÓ2006ElsevierLtd.Allrightsreserved.doi:10.1016/j.jfoodeng.2006.01.068

*theworld’slargestbananaexporter,reportedpostharvestlossesofbananafruitsashighas35–45%,whereasBrazil,theworld’ssecondproducerofbananas,reportedaprod-uctlossofapproximately40%(Cano-Chauca,Ramos,Stringheta,&Pereira,2004).

Preservationofbananasmayreducetheselossesandincreasetheavailabilityofworldfoodsupply.Dryingasamethodoffoodpreservationisonewaytoprocessagri-culturalproductsafterharvesting.Theapplicationofappropriatedryingtechniquesisdesirableinordertopro-ducegood-qualitydriedproducts.Thedryingtechniquehasbeenobservedtohaveanimpactonthedryingkinetics

R.Baini,T.A.G.Langrish/JournalofFoodEngineering79(2007)330–343331

Nomenclature

A,Bshrinkageparametersforbanana(–)a,b,c,dparametersoftheDCCmodel(–)awrelativehumidity(%or–)

C,C0,K,K0constantsforGABcorrelation(–)Cpheatcapacity(JkgÀ1KÀ1)Ddiffusioncoefficient(m2sÀ1)DEactivationenergy(K)Drpre-exponentialfactor(m2sÀ1)dpdiameter(m)hFheat-transfercoefficient(WmÀ2KÀ1)Jmassfluxofmoisturefromsurface(kgmÀ2sÀ1)k0constantinEq.(5)(hÀ1)k1,k2,k3,k4constantsinEq.(5)(–)kddryingconstant(hÀ1)kmmass-transfercoefficient(msÀ1)ktcthermalconductivity(WmÀ1KÀ1)Llength(m)MRmoistureratio(–)Ndryingrate(kgmÀ2sÀ1)Nvunhindereddryingrate(kgmÀ2sÀ1)Qnetheatfluxtobanana(WmÀ2)Rgasconstant(8.314JmolÀ1KÀ1)RDRrelativedryingrate(–)rradius(m)ttime(s)Ttemperature(°C)Tgdrybulbtemperature(°C)Twwetbulbtemperature(°C)

u

VVsVwXXcrXeXmX0YGreeksbnkskwqbqairDHcDHk/

velocity(msÀ1)

volumeofthebanana(m3)volumeofthesolid(m3)volumeofthemoisture(m3)

moisturecontent(kgperkgdrybasis)

criticalmoisturecontent(kgperkgdrybasis)equilibriummoisturecontent(kgperkgdrybasis)

monolayermoisturecontent(kgperkgdrybasis)

initialmoisturecontent(kgperkgdrybasis)humidity(kgperkgdryair)

constantinEq.(4)(–)heatofsorption(JkgÀ1)

latentheatofvaporization(JkgÀ1)bananadensity(kgmÀ3)airdensity(kgmÀ3)

heatofcondensationofwatervapor(JmolÀ1)heatofcondensationofwatervapor(JmolÀ1)characteristicmoisturecontent(–)

SubscriptsiatnodepointIGbulkairstreamsatthesurfacecatthecentre

andthequalityofthedriedproducts.WorkbyChua,

Mujumdar,Hawlader,Chou,andHo(2001)showedthatvaryingthedryingtemperaturereducedthecolourdegra-dationofthebananaslicesaswellasthedryingtime.Tem-peraturestepsof5°Cwereappliedintheirwork,inwhichexperimentswererunfora6-hperiod.Twodryingapproacheswereusedandweredescribedasstep-upandstep-downtechniques.Thetemperaturewasincreasedby5°Ceveryhourfrom20to35°Cforthestep-uptechniqueandwasdecreasedby5°Ceveryhourfrom35to20°Cforthestep-downtechnique.Resultsobtainedfromthesetech-niqueswerecomparedwiththoseobtainedfromcontinu-ousdryingat25°C.Theabsolutehumiditywasmaintainedintherangeof0.007–0.010kgperkgdryairforalltests.Theirresultsshowedthattherequiredtimetodrybananastoamoisturecontentofapproximately2.0kgperkgbasisusingthestep-downdryingtechniquewas300%shorterthanthatusingthecontinuousdryingtechnique.Bycontrast,thestep-updryingtechniquerequiredapproximately25%extratimetodrythebananastoamoisturecontentofapproximately2.1kgperkgdrybasiscomparedwiththatrequiredbythecontinuousdry-ingtechnique.Forthestep-downtechnique,thelargehumiditygradientbetweenthebulkairandatthesurfaceofthebananaincreasedthedryingrateduringtheearlystageofdrying(thebananawasmoist).Therapidmoisturelossthatoccurredduringtheearlystageofdryingreducedthemoisturecontentofthedriedbananasignificantly.Therefore,lesstimewasrequiredtodrythebananausingthestep-downtechniquethanthatcomparedwiththestep-uptechnique.

Thecolourchangeofthedriedbananaswasestimatedbysubtractingthecolourofthedriedbananasfromthecolourofthefreshbananas.Thenetchangeofcolourwasestimatedasthesquarerootofthesumforthesquaredcolourchange.Thenetchangesofcolourwerefoundtobe40%and23%forthestep-upandstep-downtechniques,respectively,lowerthanthatobtainedinthecontinu-ousdryingtechnique.ItwasalsoreportedbyChua,Mujumdar,andChou(2003),intermittentdryingwasfoundtobebeneficialformaterialsthatdriedprimarilyinthefallingrateperiodbecauseitproducedbetterqualityproducts,comparedwiththosedriedusingconventionalcontinuousdrying,inthesensethatthelevelsofascorbicacidandb-carotenecontentinthedriedfruitsfrominter-mittentdryingwerefoundtobesignificantlyimproved.

332R.Baini,T.A.G.Langrish/JournalofFoodEngineering79(2007)330–343

Theinterruptionsofdryingconditions,suchasinthetemperature-steppingandintermittentdryingtechniques,mayinterruptmoisturelossfrommaterials,whichwillgivedifferentdryingprofilesfordifferentdryingtechniques(Chua,Hawlader,Chou,&Ho,2002).Italsomeansthatselectinganappropriatedryingmodeltoevaluatethedry-ingbehaviorisnecessarytogetgoodpredictionofthedry-ingkinetics.Dryingkineticsofbananascanbemodeledempiricallyusingfirst-orderreactionkinetics,andmecha-nisticallyusingFicks’Lawofdiffusion.Empiricalmodelsincludelumpedparametermodelsthatgenerallypredictonlytheaveragemoisturecontentsofbananasasafunc-tionofdryingtime.Ontheotherhand,onetypeofmech-anisticmodelistheFickiandiffusionone,includingthediffusioncoefficient.Thistypeofmodelpredictsthemois-turecontentthatvarieswithtimeandspacewithinthebananas.Themodeldescribesthemoisturetransportphys-icallywithinthebananas,givingresultsofmorefundamen-talvaluecomparedwithempiricalmodels.However,empiricalmodelsaresimplercomparedwiththediffusionmodeland,becauseofthis,theyaresometimewellacceptedandappliedinthestudyoffruitdrying.Dryingbananasmayalsobeanalyzedusingtheconceptofachar-acteristicdryingcurve.Thisconceptassumesthat,duringhindereddrying,theshapeofthefalling-ratedryingcurveisuniqueforeachmaterial.

Theapplicationofthesemodelsmaybelimitedtocer-taindryingconditions.Thethreedifferenttypesofmodelshavebeenappliedinthiswork.Theirapplicationsindescribingthedryingkineticsofbananas,driedcontinu-ouslyandintermittently,havebeendiscussed.Duringintermittentdrying,theheatsupplyandairflowinsidethekilnareoperatedinacyclicfashion.Suchanoperationmethodchangesthedrybulbtemperatureandthehumidityoftheair.Whentheheatsupplyisinterruptedduringinter-mittentdrying,thedry-bulbtemperaturedecreases,reduc-ingtheexternaldryingrate.However,eveninthisperiodofaninterruptedheatsupply,internalmovementofmoisturemayoccurduetodiffusionorothertransportprocesses.Itcausesarelaxationprocesstooccurintheinternalprofileofthemoisturecontent,anditincreasestheinitialrateof

dryingwhentheheatsupplyisresumed.Thediffusionmodel,whichpredictsthevariationofmoisturecontentswithtimeandspace,takesthisrelaxationofmoisturecon-tentintoaccount.Therefore,thisphenomenonmaybedescribedbetterbythediffusionmodelcomparedwithempiricalmodelsandtheconceptofacharacteristicdryingcurve.

1.1.Empiricalmodel

Thedryingkineticsofbananashasbeenempiricallypre-dictedusingafirstorderapproachdescribedbyEq.(1).Dryingrate,À

dX

¼kdðXÀXeÞdt

ð1Þ

Thismodelhasbeenfoundtofittheaveragemoisturecon-tentofbananasthatweredriedcontinuouslyverywell(Baini&Langrish,2004;Hofsetz&Lopes,2004;Kiranou-dis,Tsami,Maroulis,&Marinos-Kouris,1997;Maskan,2000;Sousa&Marsaioli,2004;Phoungchandang&Woods,2000).

ThismodelwasfirstsuggestedbyLewis(1921).Here,thedryingrateisassumedtobeproportionaltothemois-turecontentdifference.kdisadryingconstant.Theequa-tionmaybeintegratedtogivethefollowingones:MR¼

XÀXe

¼expðÀkdtÞ

X0ÀXe

X¼ðX0ÀXeÞexpðÀkdtÞþXe

ð2Þð3Þ

Theseequationsexpressthefirst-orderkineticsintermsofthemoistureratio(Eq.(2))togivethemoisturecontent,X,(Eq.(3))thatdecreasesexponentiallywithtime.Xeistheequilibriummoisturecontentexpressedonadrybasis.Thereareotherexpressionsforthemoistureratio(MR)thathavebeenusedtodescribethedryingkineticsforfruits.TogrulandPehlivan(2004)usedthemodelsinTable1intheirdryingworkforgrapes,peaches,figsandplums.Theyfoundthatthefollowingmodelswerethebestonestodescribethedryingofthefruitsinquestion;the‘‘approxi-mationofdiffusionmodel’’forapricots(non-pre-treatedorSO2-sulfured)andfigs;themodifiedHendersonandPabis

Table1

Empiricalmodelsforfruitsdrying,TogrulandPehlivan(2004)Modelno.123456789101112

Modelequation

MR=exp(Àkt)MR=exp(Àktn)MR=exp(À(kt)n)MR=aexp(Àkt)MR=aexp(Àkt)+c

MR=aexp(Àk0t)+aexp(Àk1t)MR=1+at+bt2MR=aexp(Àkt)+(1Àa)exp(Àkbt)MR=aexp(Àkt)+(1Àa)exp(Àgt)

MR=aexp(Àkt)+bexp(Àgt)+cexp(Àht)MR=aexp(Àkt)+(1Àa)exp(Àkat)MR=exp(Àk(t/L2)n)

Name

NewtonPage

ModifiedPage

HendersonandPabisLogarithmicTwo-term

WandandSingh

‘‘Approximationofdiffusion’’Verma

ModifiedHendersonandPabisTwotermexponential

ModifiedPageequation–II

References

O’Callaghanetal.(1971)Page(1949)

Overhultsetal.(1973)

HendersonandPabis(1969)Yagcioluetal.(1999)

Sharaf-Eldeenetal.(1980)WangandSingh(1978)Sharaf-Eldeenetal.(1979)Vermaetal.(1985)Karathanos(1999)

Sharaf-Eldeenetal.(1980)DiamanteandMunro(1991)

R.Baini,T.A.G.Langrish/JournalofFoodEngineering79(2007)330–343333

modelforapricots(NaHSO3-sulfured),grapesandplums;andtheVermamodelforpeaches.Theseresultsshowedthattheapplicabilityofthebestempiricalmodeldependsonthematerial,andthattheremaybemorethanonemod-elthatisreasonableforeachtypeoffruit.Intheirwork,twodifferentmodelswerefoundtobereasonablemodelsforapricotsthatweretreatedbydifferentchemicals(SO2andNaHSO3wereusedinthiswork).

Otherdryingmodelsbasedontheanalyticalsolutionofthediffusionmodel(Crank,1975)inradialcoordinateshavealsobeenusedtodescribethedryingofbananas.Theana-lyticalsolutionofthediffusionmodelassumesthatthemois-turecontentwithinthebananaisinitiallyequaltotheinitialmoisturecontentandthatthesurfaceofthebananainstantlycomestoequilibriumduringdrying.Theexternalconditions,andhencetheequilibriummoisturecontent,donotchangeduringdrying.ThreemodelsbasedonthesolutionofthediffusionmodelhavebeenusedbyDandam-rongrak,Young,andMason(2002)todescribethedryingofbananas.Intheirwork,bananasweretreatedusingfourdif-ferentpre-treatments(blanching,chilling,freezingandfreezingcombinedwithblanching)priortodrying.Thedry-ingconditionswereatemperatureof50°C,anairvelocityof3msÀ1andrelativehumidityof10–35%.ThemoistureratiowasexpressedinEq.(4),whichcanbesimplifiedtogivethethreeempiricalmodelsinTable2.

MR¼X14󰀂22expÀbnDt󰀃n¼1bnr2ð4ÞInthiscase,theradiusofthebananaandthediffusioncoef-ficientareconsideredtobeconstant.Thefittingofthe

averagemoisturecontentsusingthemodelswasfoundtobesatisfactory.Thefittedequilibriummoisturecontent(kgperkgdrybasis)wasfoundtobeintherangeof(0.221–0.443)fortheNewtonmodel,(0.072–0.158)forthetwo-termmodeland(À0.053to0.045)forthePagemodel.Basedontheseresults,thetwo-termmodelwaschosenasthebestmodeltorepresentthedryingofbananasthatweredriedtolowermoisturecontents.ThenegativevalueofthefittedequilibriummoisturecontentforthePagemodelwasconsideredtobephysicallyunrealistic.Itisunusualthattheequilibriummoisturecontentshouldde-pendonthesolutionusedforfittingthedryingkinetics,be-causetheequilibriummoisturecontentshouldonlydependonthematerialbeingdried.Theanalyticalsolutionofdif-fusioncoefficientwasalsousedbyNogueiraandPark(1992).Theyfittedtheaveragemoisturecontentsforwhole

Table2

Empiricalmodelsforbananadrying,Dandamrongraketal.(2002)Modelno.ModelInstantaneousNameequation

moisturecontent1MR=Aexp(Àkt)X=Xe+A1exp(Àkt)Simple2MR=Aexp(Àkt)X=Xe+A1exp(Àkt)Two-term+Bexp(Àit)

+A2exp(it)

3

MR=Aexp(ÀktN)

X=Xe+A3exp(ÀktN)

Page

peeledbananasthatweredriedinarangeoftemperaturefrom50to70°Candairvelocityfrom0.5to1.5msÀ1.Theyreportedactivationenergiesforbananathatwerefrom15.5to25.3kJ/mol,whereasthediffusioncoefficientswerefrom2.6·10À10to6.5·10À10m2/s.

Ingeneral,thesimilarityoftheempiricalmodelsgiveninTables1and2istheexponenttermincludedintheequa-tions.Thischaracteristicofexponenttermgivesadecreas-ingexponentialcurvethatfitsthecontinuousdecreaseofmoisturecontentsofthedriedbananas.Thesemodelshavebeenfoundtofittheaveragemoisturecontentsofcontin-uousdryingforfruits,includingbananas,satisfactorilyasillustratedintheliterature,andtheywillnotbefittedagaininthiswork.ThefittingofmoisturecontentsinthisworkwillonlyusetheNewtonmodelasanempiricalapproachtoillustratethecomparisonoffittingbetweentheempiricalanddiffusionmodel,forcontinuousandintermittentdrying.

Thedryingconstantcanbecorrelatedwiththeairdry-ingconditionsandthematerialdimensions,asshowninEq.(5)(Kiranoudisetal.,1997).

kd¼k0dk1k2k3k4

pTuaw

ð5Þ

ThedryingconstanthasunitsoftimeÀ1.Here,dpisthediameterofthedriedmaterial,Tisthedryingtemperature,uistheairvelocityandawistherelativehumidity.

Thedryingconstantsfor35foodmaterialswerecom-piledbyKrokida,Foundoukidis,andMaroulis(2004).Forbananas,thedryingconstantwasfoundtobeintherangebetween0.11and1.9hÀ1.Theexperimentalcondi-tionsforbananaswerelengthsof0.1–0.28m,temperaturesof40–80°C,relativehumidityof3–40%andairflowratesof0.62–4.5m/s.However,SousaandMarsaioli(2004)obtainedhighervaluesofthedryingconstantforbananascomparedwiththosecompiledbyKrokidaetal.(2004).TheydriedCavendishbananasinamicrowaveovenwithairtemperaturesandflowratesthatvaryfrom25to55°Cand0.8to1.8m3/min,respectively.Thefitteddryingconstantshadarangeof0.52–0.69hÀ1.ThedifferencebetweentheresultsofSousaandMarsaioli(2004)andKrokidaetal.(2004)mayreflectsomebiologicalvariabilitybetweenthesamplesinthetwostudies.

Theequilibriummoisturecontent,Xe,issometimestrea-tedaszero(Sousa&Marsaioli,2004)tosimplifythemath-ematicalsolution.Inreality,itisafunctionoftherelativehumidityandthetemperature(Kiranoudisetal.,1997).Oneofthemostpopularfittingequationsfortheequilib-riummoisturecontentsistheGABcorrelation,asdescribedbyXXmCKaw

½ð1ÀKað6ÞwÞð1ÀKawþC¼C󰀂CKawÞ󰀃

DHc

󰀃0exp

ð7ÞK¼K󰀂RTDHk

󰀃0exp

RT

ð8Þ

334R.Baini,T.A.G.Langrish/JournalofFoodEngineering79(2007)330–343

Here,awisthewateractivity,Xmisthemonolayermoisturecontent,whileCandKareconstantsthatarerelatedtothedryingtemperature,T(K).DHcandDHkarefunctionsdescribingtheheatofsorptionofwater(monoandmulti-molecularlayers)andtheheatofcondensationofwaterva-por,respectively.Risthegasconstant,takenas8.314JmolÀ1KÀ1,ifDHcandDHkareinJmolÀ1.

Theempiricalmodelsdiscussedonlytheaveragemois-turecontentasafunctionofthedryingtime,t.Theaveragemoisturecontentswithinthedriedmaterialsmaychangewhenthedryingconditionschange.Thevariationofmois-turecontentasfunctionsofbothtimeandspacewithinthedriedmaterialsisnotincludedintheempiricalmodels,whichmaylimittheirapplicationsindescribingtheinter-mittentdryingofbanana.1.2.Characteristicdryingcurve

Theconceptofacharacteristicdryingcurvesuggeststhatthereisauniqueshapeofthefallingorhindereddry-ingcurveforaparticularmaterial.Therefore,acharacter-isticcurveofamoistmaterialmightbedrawnupfromasingleexperimentalrate-dryingcurve.Therelativedryingrateisdefinedas,R¼NDR

N¼fð/Þð9Þ

v

Nvistheunhindereddryingrate.Itmaybetakenasthemaximumrate,ifthereisnoclearunhindereddryingperi-od./isthecharacteristicmoisturecontent,whichisthera-tioofthefreemoisturecontent(XÀXe)tothemoisturecontentdifferencebetweenthecriticalpointandtheequi-libriummoisturecontent./¼

XÀXeXcrÀXð10Þ

e

Xisthevolume-averagedmoisturecontent,Xcristhemois-turecontentatthecriticalpointandXeisthatatequilib-rium.Forproductswithnoclearfirstdryingphase,thecriticalmoisturecontentisusuallyassumedtobeequaltotheinitialmoisturecontent(Jannot,Talla,Nganhou,&Puiggali,2004).Forbananas,thefirstdryingperiodwasnotfoundtobeclear(Baini&Langrish,2004)anditappearedshortlyafterthestartofdryingintheworkofTalla,Jannot,Kapseu,andEtude(2001).

Theplotoftherelativedryingrateagainstthecharacter-isticmoisturecontentisnormalizedtopassthroughthepoint(1,1)atthecriticalpointandtopassthroughthepoint(0,0)atequilibrium.Thecriticalpointisthepointoftransitionfromtheunhindered(orthemaximumdryingrateiftheunhinderedperiodisunclear)tothehindereddryingperiod.ThisapproachhasbeenusedbyJannotetal.(2004)todescribethedryingofbanana.Theyobservedthatthereweretwosignificantdryingphases.Thefirstphasewasanexponentialdecreaseofthedryingrateforthecharacteristicmoisturecontentfrom/2to1,asdescribedbyEq.(11).Then,itwasfollowedbyalinear

periodofdryingforthecharacteristicmoisturecontentfrom/1to/2asdescribedbyEq.(12).Thedryingrateasafunctionofthecharacteristicmoisturecontentintherangefrom/1to0wasnotdescribedmathematicallybyJannotetal.(2004),andthereforeitisnotincludedhere.Thevaluesofthecharacteristicmoisturecontent,/1and/2,whichcorrespondtotransitionsbetweenthedryingperiods,weredeterminedgraphicallytobe0.04and0.2,respectively.

fð/Þ¼aexpðb/Þfor/2ð12Þ

TheyalsosuggestedcorrelationsofmoisturecontentasafunctionoftimebysolvingEqs.(9)–(12).Thesecorrela-tionsarepresentedinEqs.(13)and(14).Thefittedparam-etersweregivenasa=0.079,b=2.541,c=0.478,d=À0.004andNv=1.716kgkgÀ1sÀ1.

XðtÞ¼XÀ1󰀄abN󰀅

bðXlnexpðÀb/Þþv

e0ÀXeÞXÀXt;

0e/2ðXðtÞ¼XX󰀂d󰀃

󰀂cNveþðX0ÀeÞ/þ

cexpÀXðtÀt󰀃13Þ

Àd

2Þ;0ÀXec/1ð14Þ

Thisconceptofusingacharacteristicdryingcurveimplies

thattheratioofthedryingraterelativetotheunhinderedrateisindependentoftheexternaldryingconditions.1.3.Diffusionmodel

Fick’slawsofdiffusionhavebeenfrequentlyadoptedintheliteratureindescribingthediffusionofmoisturewithindriedmaterials,includingdriedbananas.Foraxiallysym-metriccylindricalcoordinates,Fick’ssecondlawofdiffu-sionpresentsthemoisturecontent,Xasafunctionoftimeanddistance,r,perpendiculartotheairstreamfromthecoreasgiveninEq.(15).

oXot¼Do󰀂rorroX

󰀃

orð15ÞThediffusioncoefficient,D,dependsonthetemperaturedistributionthroughoutthebanana,whichisoftenas-sumedtofollowanArrheniusrelationship(Zogzas,Maroulis,&Marinos-Kouris,1996)asshowninEq.(16).Thistemperaturedistributionthroughoutthebananadur-ingthedryinghasnotalwaysbeenclearlyexplainedintheestimationofthediffusioncoefficientinsomepreviousworksofbananadryingthathavealsousedthediffusionmodel(Dandamrongraketal.,2002;Demirel&Turhan,2003;Karim&Hawlader,2004;Nogueira&Park,1992;Phoungchandang&Woods,2000;Queiroz&Nebra,2001).

D¼D󰀂DE

󰀃

rexpÀTþ273ð16Þ

R.Baini,T.A.G.Langrish/JournalofFoodEngineering79(2007)330–343335

Here,Dristhepre-exponentialfactorforthediffusioncoefficient,andDEistheactivationenergy.Thisactivationenergyisassociatedwiththeworkrequiredtoremoveonemoleofmoisturefromagivenmaterialandthusdependsonthematerial–moisturebonding.Differenttypesofbind-ingenergiesaregivenbyStrumilloandKudra(1986),oftheorderof5kJ/molforchemicallyboundmoisture(stoichiometric),3kJ/molforphysico-chemicalmoisturebinding(non-stoichiometric)and0.1kJ/molforphysico-mechanicalbinding.Thesefiguressuggestthatwatermol-eculesthatareabsorbedhygroscopicallyontothecellwallatmonolayersitesaremorestronglyboundthanthoseoccupyingsiteswithotherwatermolecules,whicharede-scribedasmultilayers.Thismayalsoexplainthedepen-denceofthediffusioncoefficientonthemoisturecontent.Theevaporationofmoistureatthesurfaceduringdryingreducesthenumberofwatermoleculeswithinthematerial.Therefore,therearefewerwatermoleculesatthesiteswithlowermoisturecontents.Thisphenomenonreducesthediffusioncoefficient(Blakemore,2005).How-ever,shrinkagereducesthepathlengthfordiffusion,whichalsoincreasestheeffectivediffusioncoefficient.Thesetwoeffectsofmoisturecontentandshrinkageonthediffusioncoefficienttendtocanceleachotherout,whichiswhyonlythetemperaturedependenceofdiffusioncoefficientisconsideredinthiswork.Themovementofwatermolecules,whichdependsontheirkineticenergy,explainsthedependenceofthediffusioncoefficientontemperature.

ThetemperaturedistributionofthedriedbananasthatisincludedinEq.(16)canbedescribedbythepartialdif-ferentialequationasgiveninEq.(17).Thebananaproper-ties,whicharethethermalconductivity,kandtheheatcapacity,Cp,arefunctionsofthemoisturecontent.There-fore,thisrelationshiprequiresEqs.(15)and(17)tobesolvedsimultaneously.

oTot¼ktc1o󰀂qroT󰀃

ð17ÞbCprororAtthebananasurface,themassfluxofmoisturefromthebananas(J)isproportionaltothedifferencebetweenthehumidityofairjustabovethebananas’surface(Ys)andthatinthebulkairstream(YG),asfollows:J¼qairkmðYsÀYGÞ

ð18Þ

Inthisequation,qairrepresentsthedensityofair,whilekmisthemass-transfercoefficient.Whilethehumidityoftheairstream,YG,canbecalculatedfromthedryandwet-bulbtemperatures(TGandTw)inthedryer,Ysisafunc-tionofthemoisturecontent.ThereforeEq.(18)formsaboundaryconditiontoEq.(15).

Atthebananas’surface,bothconvectiveheattransportandheattransferassociatedwiththeevaporationofmois-ture(thetotalrateofheattransferbeingQ)mustbeconsidered:

Q¼hFðTGÀTsÞÀðkwþksÞJ

ð19Þ

Intheaboveequation,hFistheheat-transfercoefficient,kwisthelatentheatofvaporization,ksistheheatofsorptionandTsisthesurfacetemperature.ThisequationformsaboundaryconditionforEq.(17).Animplicitassumptionhere,whichisusedtospecifytheheatfluxtothebananas,isthatmoistureevaporatesclosetothebananas’surface.Ifweassumethatthesameamountofheatandmasstransportisoccurringatallsurfaces,thenthetemperatureandmoistureprofileswillbesymmetricaboutthecentreofthebananas.Consequently,moistureandheattransportcannotoccuracrossthecentre,afactwhichdefinesanothertwoboundarydX󰀆conditions:󰀆dr󰀆󰀆¼0ð20ÞdT󰀆c

󰀆dr󰀆󰀆¼0ð21Þc

Ifthemoistureandtemperaturegradientsareapproxi-matedbyfinitedifferences(Wan&Langrish,1995),thenthedryingmodelreducestoa‘stiff’systemofordinarydif-ferentialequationsapplicableatthesurface,withintheba-nanaandatthecentreofthebanana:Surface:

dXs11󰀄Dr1sðX󰀅

dt

¼1ÀXsÞ

rDrÀJð22ÞsDrsdTs11󰀄ktcr1sðX1ÀXs󰀅

dt

¼Þ

rDrþQð23ÞsqbCpDrsWithinthebanana:

dXi1D󰀄riþ1=2ðXiþ1ÀXiÞriÀ1=2ðXiÀX󰀅

dt

¼rDrdTi1k󰀄DrÀiÀ1Þ

Drð24Þ

riþ1=2ðTiþ1ÀTiÞriÀ1=2ðTiÀTiÀ1Þ󰀅dt¼tc

rDrqÀð25Þ

bCpDrDrCentre:

dXc1DrcÀ1=2󰀄ðXcÀX󰀅dt

¼À

cÀ1Þ

rDrð26ÞcDrcdTc1ktcrcÀ1=2󰀄ðTcÀTcÀ1󰀅

dt

¼À

Þ

rDrð27Þ

cqbCpDrcThenumericalsolutionappliedheredividesthebanana

into30controlvolumes,whichleadstoasystemof60dif-ferentialequationsdescribingconditionsatthecentre,thesurfaceandwithinthebanana,whichcanbesolvedusinganintegratorforstiffsystems.Gear’smethodwasused,asimplementedinthestandardsubroutineordinarydiffer-entialequations(ODE)fromtheODEPACKlibrary.Thesubscriptsiþ1,iÀ1andcÀ1refertothepositionsoftheedgesofcontrol22volumes,since2theintegrationofthemoisturecontentandthetemperaturewithinthebananainvolvesthecentraldifferencesofthecontrolvolumes.Themoisturecontentandtemperaturedistributionswithinthedriedbananas,asdescribedinEqs.(15)and(17),arefunctionsofspace.Thismeansthatthesecorrela-tionsalsodependontheradiusofthebananas,which

336R.Baini,T.A.G.Langrish/JournalofFoodEngineering79(2007)330–343

changesduringdryingduetotheshrinkageeffect.There-fore,itisnecessarytoincludethiseffect.1.4.Shrinkage

Themoisturelossduringdryingcausestheinternaltis-sueofthebananastocontract.Thisreducesthediameterandthelengthofthedriedbananasandreducesthevolumeofthebananas.Thisshrinkagephenomenonreducesthesurfaceareaforheatandmasstransfer,whichmayaffecttheoveralldryingrate.

Abananaiscomposedofsolidsandmoisture.Theini-tialmoisturecontentofabananaisapproximately60–80%ofthetotalmass.Othercomponentssuchasfibre,starch,sugarandnutrientsmakeuptheremainingpercent-age.Thetotalvolumeofabananaisthevolumeofthemoisture(Vw)plusthevolumeofthesolid(Vs).MayorandSereno(2004)reviewedanumberofshrinkagemodelsforfoodmaterialsduringconvectivedrying.Themodelsreviewedwerethosethathadbeenappliedfordifferentgeometries(cylinder,sphere,ellipsoid,slabandcube)anddifferentreduceddimensions(volume,radius,thickness,width,length,diameterandsurfacearea).Theypresentedfitteddataforcarrot,potatoandapple.Shrinkagewasfoundtoincreaselinearlywiththevolumeofremovedwaterforthesematerials.Thisindicatesthatthevolumechangemaybecorrelatedasalinearfunctionofthemois-turecontentofthedriedbananas,asshowninEq.(28).

Therateofchangeinradiusandlengthofthedriedbana-nasmayinitiallybeassumedtooccuratequalrates,sotheradiuschangemaybeassumedtobeproportionaltothecuberootofthevolumechange.Theradiuschangemaythenbecorrelatedwiththemoisturecontentofthedriedbananas,asshowninEq.(29).TheeffectofradiuschangehasinitiallybeenconsideredinthediffusionmodelasdescribedinEqs.(22)–(27).VX¼AþBV0X0

󰀂󰀃1󰀂󰀃13rV3X¼¼AþBr0V0X02.Materialsandmethod2.1.Experimentalapparatus

Theexperimentalapparatususedinthisworkwasasteam-heatedkilnintheDepartmentofChemicalEngi-neeringattheUniversityofSydney.AsimplifiedschematicdiagramofthekilnisshowninFig.1.Thekilnisapilot-scaletunneldryerwithworkingsectiondimensionsof0.45mheight,0.9mwidth,0.4mlengthandavolumetriccapacityof0.162m3.Acentrifugalfanwithaconstantmotorspeedof1400rpmprovidesanairvelocityof1.3msÀ1throughtheworkingsection.Ajacketedsteam

ð28Þð29Þ

PI PI VENT TOOUTSIDECONTROLVALVEHEATEXCHANGERBLOWER14 KWBOILERBUTTERFLYVALVESOLENOID VALVE PRVAIR INTAKEPI BUTTERFLYVALVESPARGEKILNBUTTERFLYVALVEBALANCEWATERFEEDTOP UPTANKCOMPUTERDRY AND WET BULB TEMPERATURES BANANAS MASS PUMPFig.1.Schematicdiagramofthepilotscalekiln.R.Baini,T.A.G.Langrish/JournalofFoodEngineering79(2007)330–343337

injectionunitisused,inwhichsteamisinjectedthroughsixinjectionportsovera300mmdiameterductintothetun-nel.Steamisgeneratedbya10kWboiler,withthesteamfinalpressurebeingregulatedto1atm(gauge).Asteam-heatedfinnedheatexchangerisusedtoregulatethedry-bulbtemperature.Theflowratesofthesteamtotheheatexchangerandfromthesteam-injectionsystemarecon-trolledbycontrolvalves,tomaintainthedryandwet-bulbtemperaturestothedesiredsetpoints.

Theaveragevaluesforeachofthedryandwet-bulbtemperatureswerecalculatedbasedonthereadingmea-suredbythefourresistancethermometers(RTDs)thatweremountedinpairsatbothsidesofthekiln.Thetwothermometersusedtomeasurethewetbulbtemperatureswerecoveredbyadampwick.Oneendofeachwickwasimmersedinasmallwaterbathfilledwithdistilledwatertokeepitwet.Aplatformbalancewithacapacityof200kg(±0.005kg)undertheworkingspaceofthekilnmeasuredthemassofthebananasasthedryingprogressed.Outputsignalsfromthecontrolvalves,resistancether-mometersandplatformbalanceweresenttoanIBM-compatiblepersonalcomputerthroughaRS-232interface.Theseprovideddataloggingofthemainprocessvariables,aswellassendingcontrolsignalstothecontrolvalves.ThecontrolsoftwarewaswritteninVisualBasic.Humidityreg-ulationwasalsoprovidedbymanuallyoperatedbutterflyvalves,whichactasventsforthekiln.Forsafetypurposes,asolenoidvalvetoeachunit(heatexchangerandsteaminjection)wasusedtototallyisolatethesteamsupplyifnecessary.

2.2.Experimentalprocedures

Fiveexperimentswerecarriedout,inwhichpeeledbananasweredriedinthekiln.Inthefirstandsecondexperiments,ripebananasweredriedcontinuouslyfor72hatawetbulbtemperatureof40°Candthedrybulbtemperaturesof60and80°C,respectively.Themassofthedriedbananaswasmeasuredbythebalanceunderneaththekilnandwassenttothecomputereverythreeseconds.Anotherexperimentwithcontinuousdryingat60°Cwasrepeatedtogetanothersetofdata.Inthethirdexperiment,ripebananasweredriedintermittentlyfor72hatwetanddry-bulbtemperaturesof40and60°C,respectively.Theboilerandthefanwereswitchedonfor8htoletthedryingprogress.Bothunitswerethenswitchedofffortheremain-ing16hoftheday.Thesameschedulewasusedforthefol-lowing48hofdrying.

Unripeandripebananasweredriedfor72hand24hinthefourthandfifthexperiments,respectively.Themassofthedriedbananasweremeasuredmanuallyforbothexper-iments.Thelengthandthediameterofthedriedbananaswerealsomeasuredinthefifthexperimentusingaverniercaliper.

Thesugarcontentsofthebananasatdifferentdegreesofripenessweredeterminedusingthephenol-sulfuricacidmethod(Masuko,Minami,Iwasaki,&Majima,2005).In

thiswork,aweighedsectionofbananawasblendedwith100mlofwater.Thiswastoallowthesugarinthebananatodissolveinthewater.Thewaterwasthenseparatedfromthesolidusingacentrifuge.1mlofthesupernatantwasdilutedwith100mlofwater,andthissolutionwasthenusedasthesampleintheanalysis.Theanalysisinvolvedtheadditionof1mlofphenoland5mlofconcentratedsulfuricacidto1mlofsample.Theadditionofphenolandsulfuricacidtosugarsgaveanorange-yellowcolour,whichcouldbedetectedbyaspectrophotometerthatwassettodetectabsorptionat485nm.Thesugarcontentwasthencalculatedbasedonthestandardcurvedevelopedusingaglucosestandardsolutionbetween0and300lgglucose/ml.Thesugarcontentdeterminedinthisanalysiswastheamountofsugarthathadbeendissolvedinthewaterexpressedasaglucoseequivalent,neglectingthesugarthathadbeenleftundissolvedinthesolidpartofthebanana.

Forthepurposeofestimatingtheinitialandfinalmois-turecontents,bananasamplesfromeachexperimentweredriedinanovenat105°Cfor24±2h.Bananasampleswerepreparedfrom(1)thefreshbananasand(2)thedriedbananasthathadbeendriedinthekiln.Thesampleswerepreparedbycuttingapproximately1cmlengthsofdifferentpartsofthebananas,whichwerethenputinsmallcontain-ers.Theemptycontainerswereweighedbeforetheywereused.Themassesofthecontainerswiththesamplesinthemweremeasuredbeforeandafterdrying.

Aleastsquaresprocedurewasusedinthefittingofpre-dictionsofthedryingmodelstothemeasuredmoisturecontents.ThisprocedureminimizesthesumofsquaresofthedifferencebetweenthepredictedandexperimentalmoisturecontentsasillustratedsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiinEq.(30).

Standarderror,se¼Pi½ðXExpÀXPredÞ2

n¼1󰀃nÀ1ð30Þ

Thedryingconstantwasthefittedparameterfortheempir-icalmodel,whereasthepre-exponentialfactor,theactiva-tionenergyandtheheat-transfercoefficientwerefittedforthediffusionmodel.3.Resultsanddiscussion

3.1.Initialandfinalmoisturecontents

TheinitialandfinalmoisturecontentsaregiveninTable3.Thefinalmoisturecontentsappearedtobemoreuniformamongthebananas.Thecoefficientofvariationforthefinalmoisturecontentswasfoundtobelowerthanthatfortheinitialmoisturecontents.Therefore,thefinalvaluesweretakenasthebasisforallmoisturecontents.Amassbalanceforthetotalmoisturelossofthebananaswasusedtocheckthequalityofthedata.Therewasan11%differ-encebetweenthemoisturelossestimatedfromthediffer-encebetweentheinitialandfinalmoisturecontentsfromovendryingandfromtheamountofmoistureloss

338R.Baini,T.A.G.Langrish/JournalofFoodEngineering79(2007)330–343

Table3

InitialandfinalmoisturecontentsofbananasforthefirstexperimentExperiments

SamplenumberContinuousdrying

Averagemoisturecontent(kgperkgdrybasis)

Standarddeviationofmoisturecontent(kgperkgdrybasis)Coefficientvariationofmoisturecontent(dimensionless)Intermittentdrying

Averagemoisturecontent(kgperkgdrybasis)

Standarddeviationofmoisturecontent(kgperkgdrybasis)Coefficientvariationofmoisturecontent(dimensionless)

Initialmoisturecontent,X0(kgperkgdrybasis)S1S23.8413.4653.6170.1730:173

¼0:0483:623.7463.9373.5250.3210:32

¼0:0913:53

S33.496

S43.664

Finalmoisturecontent,Xf(kgperkgdrybasis)S1S20.1950.2050.2000.0080:008

¼0:0390:200.2580.2610.2600.0030:003

¼0:0130:26

S30.191

S40.207

3.3173.1020.2640.257

V/V0 (dimensionless)recordedinthekiln.Thereasonforthisdiscrepancymaybethesignificantvariabilityininitialmoisturecontents,whichmakesaccuratesamplingofinitialmoisturecontentsverydifficult.Hencethemoisturecontentsherehadbeenbasedonthefinaloven-dryvalues,whichhadlessvariationcomparedwiththeinitialvalues,andtherecordedmoisturelossinthekilnfromtheplatformbalance.3.2.Shrinkageanalysis

Thevolumeofthedriedbananachangedlinearlywiththemoisturecontent.Thislinearfunctionofvolumewasnotaffectedbythetemperature(Fig.2)butwasaffectedbythedegreeofripeness(Fig.3).TheconstantsAandB,discussedinSection1,werefoundtobe0.65and0.35,respectively.Thus,theshrinkagemaybedescribedbythefollowingcorrelation:VX¼0:6þ0:4V0X0

ð31Þ

1.00.80.60.40.20.00.0UnripeRipefitted line for ripefitted line for unripe0.20.40.6X/X0 (dimensionless)0.81.0Fig.3.Thevolumeasafunctionofthemoisturecontentofthedriedbananasfordifferentdegreeofripeness.0.0160.0140.012TheradiuschangeofthedriedbananaswascorrelatedusingEq.(29)andwascomparedwiththeexperimentaldataasshowninFig.4.Thefittingisactuallybetterwhenthevolumechangeiscorrelatedasthesquareoftheradiuschange(shownasthesolidline)comparedwiththecubed

1.00.80.60.40.20.00.060 °C80 °Cfitted line0.20.40.6X/X0 (dimensionless)0.81.0Radius (m)0.0100.0080.0060.0040.0020.0000.000.50Radius squaredRadius cubed1.001.502.002.503.00Moisture content (kg per kg dry basis)3.504.00V/V0 (dimensionless)Fig.4.Theradiusasafunctionofthemoisturecontentofthedriedbananas.oftheradiuschange(shownasthedottedline)assuggestedintheintroduction.Thisindicatesthatthechangeinlengthisinsignificantcomparedwiththechangeinradiusduringthedryingofthebananas.Thisisconsistentwiththeshrinkagebeingmoresignificantintheradialdirectioncomparedwiththatinthelongitudinaldirection.There-fore,thechangeofradiusmayberepresentedbestbythefollowingcorrelation:r¼r0

󰀂VV0

󰀃12¼󰀂

X0:6þ0:4X0

󰀃12ð32Þ

Fig.2.Thevolumeasafunctionofthemoisturecontentofthedriedbananasfordifferenttemperatures.R.Baini,T.A.G.Langrish/JournalofFoodEngineering79(2007)330–343339

Thisequationfitstheactualdatabetterthanthecuberootrelationship,asshowninFig.4.3.3.Moisturecontentfittinganalysis

Theaveragemoisturecontentofthedriedbananasisplottedasafunctionoftime,asshowninFigs.5and6forcontinuousandintermittentdryingexperimentsat60°C,respectively.Themoisturecontentdecreaseswithtimeuntilitreachestheequilibriumstate,asusualduringdrying.Boththeempiricalanddiffusionmodelspredictthemoisturecontentsverywell.Forintermittentdrying,therelaxationperiodwaspredictedbythediffusionmodelbutnotbytheempiricalmodel.Thediffusionmodeltookintoaccountthevariationofmoisturecontentandtemper-aturewithtimeandspace,meaningthismodelincludedtheeffectofthedry-bulbtemperaturechangesduringthenightperiod(relaxationperiod).Thechangesinthedry-bulbtemperatureaffectedtheheatandmass-transferratesatthebananasurface,whichalsoaffectedthemoisturecon-tentwithinthebanana.Thedecreaseintheheatandmass-transferrates,whichalsodecreasedthemoistureloss

3.00)sExperimental dataisabPredicted by empirical model 2.50yrPredicted by diffusion modeld gk 2.00rep gk(1.50 tnetno1.00c erutsi0.50oM0.0001020304050607080Time (hr)Fig.5.Fittingofthemoisturecontentsofthedriedforcontinuousdrying.2.50)sExperimental dataisaPredicted by empirical modelb y2.00Predicted by diffusion modelrd gk rep1.50 gk( tnet1.00noc erut0.50sioM0.0001020304050607080Time (hr)Fig.6.Fittingofthemoisturecontentsofthedriedbananasforintermittentdrying.atthebananasurfaceduringthenightperiod,wasincludedintheestimationoftheaveragemoisturecontent.Thishelpedthediffusionmodeltofittherelaxationperiodbet-terthantheempiricalmodel(Fig.6).Thediffusionmodelgavestandarderrorsof0.04kgperkgdrybasisand0.09kgperkgdrybasisforcontinuousandintermittentdrying,respectively.Thesestandarderrorswere50%and88%lowerthanthoseobtainedinthefittingoftheempir-icalmodel,whichwere0.08kgperkgdrybasisand0.77kgperkgdrybasisforcontinuousandintermittentdrying,respectively.

ThesurfacetemperaturespredictedbythediffusionmodelforbothcontinuousandintermittentdryingareshowninFig.7.Forcontinuousdrying,itincreasesfromapproximately50–60°C(dry-bulbtemperature).Forinter-mittentdrying,thesurfacetemperaturechangedaccordingtothechangesofthekilntemperature.Thekilntempera-tureincreasedfromapproximately50°Ctoavalueclosetothedry-bulbtemperatureduringtheday(theboilerwason)andfluctuatedbetween25°Cand35°Cduringthenight(theboilerwasoff).Theeffectofthischangeoftemperatureistakenintoaccountintheapproximationofdiffusioncoefficient,whichfollowstheArrheniusrelationship.

Thesurfacemoisturecontentispredictedbythediffu-sionmodeltodropfromtheinitialmoisturecontenttoitsequilibriummoisturecontentforcontinuousdrying,asshowninFig.8.Thedatapresentedinthisfigureareforexperimentsat60°C.Forintermittentdrying,thesurfacemoisturecontentispredictedtodecreaseduringthedayandincreaseduringthenight.Duringtheday(heatingper-iod),theheatandmass-transferratesatthesurfacecontrolthedryingandcausetherapiddropinthesurfacemoisturecontent.Theincreaseinthesurfacemoisturecontentdur-ingthenightisconnectedwiththedryingbeingcontrolledbyinternaldiffusion,inwhichthemoisturemovesfromtheinnerwetregionofthebananastothedrysurfaceregion.Sincetheboilerandthefanwereoff,thehumidityoftheairstreamabovethesurfaceofthedriedbananasincreased.Hence,themassandheat-transferratesfrom

70)C°60( eruta50repme40t ecafr30us det20ciderP10Continuous dryingIntermittent drying001020304050607080Time (hr)Fig.7.Thepredictedsurfacetemperaturefordryingexperimentat60°C.340

R.Baini,T.A.G.Langrish/JournalofFoodEngineering79(2007)330–343

3.00 Continuous dryingtnetn2.50Intermittent dryingoc )esriustasb2.00i oymrd ecg1.50ak frrueps dg1.00ek(tcider0.50P0.0001020304050607080Time (hr)Fig.8.Thepredictedsurfacemoisturecontentfordryingexperimentat60°C. 0.90tnetn0.80Intermittent dryingoContinuous dryingc e0.70r)ustissioa0.60mb ymrd0.50u igrkb 0.40irlieup qgek0.30 d(etc0.20ider0.10P0.0001020304050607080Time (hr)Fig.9.EquilibriummoisturecontentspredictedusingtheGABcorrela-tionsforexperimentsat60°C.thesurfacewerereduced.Thisencouragedthemoisturetoaccumulateonthesurface,asshownbytheincreasingsur-facemoisturecontentatnight.Thisphenomenonisnotpredictedwellbytheanalyticalsolutionofthepartialdif-ferentialequationofFick’ssecondlaw(Eq.(4)),asopposedtoournumericalsolution.Theanalyticalsolutionassumesthatthesurfacemoisturecontentreachesitsequi-libriumvaluequickly(Ma&Rudolph,2001).However,ournumericalsolutiondoesallowforthisphenomenonandsoismoreaccuratephysically.

TheequilibriummoisturecontentpredictedbytheGABcorrelationsisshowninFig.9.Thepredictedfinalequilib-riummoisturecontentsarefoundtobelowerthantheexperimentalequilibriummoisturecontents;thepredictedvaluesare0.039kgperkgdrybasisand0.120kgperkgdrybasisandtheexperimentalvaluesare0.200kgperkgdrybasisand0.260kgperkgdrybasisforcontinuousandintermittentdryingexperimentsat60°C,respectively.3.4.Analysisoffitteddryingparameters

Thedryingconstants,fittedinthefittingoftheempiricalmodelwere0.11hÀ1and0.09hÀ1,forcontinuousand

intermittentdrying,respectively.ThefitteddryingconstantforcontinuousdryingherewaswithintherangegivenbyKrokidaetal.(2004),wherecontinuousdryingwasalsoused.Theirreporteddryingconstantswereintherangebetween0.11and1.9hÀ1.

Forthediffusionmodel,theactivationenergyhasbeenfittedsimultaneouslytotwodatasetsofmoisturecontentsforthecontinuousdryingexperimentsat60and80°C.Thesimulationhasbeenrununtiltheglobalminimumofthetotalstandarderrorwasobtained.Thisproceduregaveapre-exponentialfactorandanactivationenergyof1.36·10À7m2/sand1610K(13.4kJ/mol),respectively.Thus,thediffusioncoefficientasafunctionoftemperatureforbananacanbeexpressedasshowninEq.(33).Theesti-mateddiffusioncoefficientusingthisequationforatemper-atureof60°Cwas1.09·10À9m2D¼1:36Â10À7exp󰀂/s.

À1610

󰀃

Tþ273ð33Þ

TheactivationenergyobtainedherewaslowerthanthatgivenbyNogueiraandPark(1992).Theirreportedactiva-tionenergyforbananawasfrom15.5to25.3kJ/mol.Zog-zasetal.(1996)reportedarangeofactivationenergiesfrom44to110kJ/molforapple,39.8kJ/molforavocado,from12.7to28.7kJ/molforcarrotandfrom16.3to108kJ/molforpotato.Theestimateddiffusioncoefficientherewasattheupperendofthosereportedinthelitera-ture,closetotheuppervalueof1.59·10À9m2/sreportedbyQueirozandNebra(2001).Therangeofdiffusioncoef-ficientsgivenbyKarimandHawlader(2004)wasfrom6.61·10À11to2.41·10À10m2/s;NogueiraandPark(1992)from2.6·10À10to6.5·10À10m2/s;QueirozandNebra(2001)from6.98·10À10to1.59·10À9m2/s;Pho-ungchandangandWoods(2000)from4·10À10to7·10À10m2/s;Dandamrongraketal.(2002)from4.6·10À10to13.0·10À10m2/s.Thedifferenceintheesti-mateddiffusioncoefficientsobtainedheremaybeduetothedifferentapproachestakentosolvethedryingmodel.Inthiswork,thetemperaturedistributionthroughoutthebananawasconsideredintheheattransferrelationshipde-scribedbyEq.(17).Bananaproperties,suchasthethermalconductivityandtheheatcapacity,whichchangewiththemoisturecontent,werealsoincluded.Thistemperaturedis-tributionwasthenincludedintheestimationofthediffu-sioncoefficientbasedontheArrheniusrelationshipgiveninEq.(15).TherangesofdiffusioncoefficientsforotherfruitsreportedbyZogzasetal.(1996)werefrom2.2·10À12to6.4·10À9m2/sforappleandfrom1.1·10À10to1.8·10À9m2/sforavocado.

Theactivationenergyfoundhereof13.4kJ/molrepre-sentstheenergyrequiredtobreakthebanana–moisturebondingofamolewatermolecule,andtobringthemole-culetothesurface,wherethemoleculewillfinallyevapo-rate.Thisvalueishigherthanthematerial–moisturebindingenergiesgivenbyStrumilloandKudra(1986),dis-cussedinSection1.Theactivationenergyfoundheremayalsobeassessedinthebroadercontextofactivation

R.Baini,T.A.G.Langrish/JournalofFoodEngineering79(2007)330–343

Table4

Fittedparametersanddiffusioncoefficientsforcontinuousdryingat60°CandintermittentdryingDryingtechniques

InitialDr(m2/s)

InitialDE(K)

FittedDr(m2/s)

FittedDE(K)

Diffusioncoefficientforthedryingat60°C(m2/s)1.23·10À91.58·10À9341

Standarderrorofmoisturecontents(kgperkgdrybasis)0.0420.090

Continuousdryingat60°CIntermittentdryingat60°C

1.36·10À71.36·10À716101610

1.37·10À71.47·10À715701510

energiesforotherprocesses,asquotedbyDebenedetti(2003).Hesuggestedthathydrogenbondstrengthswereoftheorderof20kJ/mol,similartotheactivationenergyfoundhere,whileregulardispersiveinteractionswereoftheorderof1kJ/molandcovalentbondswerearound400kJ/mol.Theheatoffusionforicewas6kJ/mol,whiletheheatofvaporizationofwaterwas45kJ/mol,andtheheatofsublimationofwateratthetriplepointwas51kJ/mol.Inthecontextofthesenumbers,anactivationenergyof13.4kJ/molsuggeststhatsurfacediffusionofwatermoleculesalongcellularspacesinsidethebananaistheactualdiffusionalprocessthatisoccurring.

Thefittedpairofthepre-exponentialfactorandtheacti-vationenergygiveninEq.(33)wereusedastheinitialguessinthere-fittingofparametersforarepeatedcontin-uousdryingexperimentat60°Candanintermittentdryingexperimentalsoat60°Cduringthe8-hdaytimeheatingperiod.Thefittedparametersobtainedhereareonlyveryslightlydifferent,aspresentedinTable4.Theyareapprox-imately2%and8%higherthanthosegivenbyEq.(33),fortherepeateddatafromcontinuousdryingandintermittentdrying,respectively.Thefittedheat-transfercoefficientwasfoundtobe90WmÀ2KÀ1.Theheat-transfercoefficientindicatesthattheinitialstageofdryingwascontrolledbytheexternaldryingconditions,whileinternaldiffusionwasthecontrollingfactorinthelaterstagesofdrying.3.5.Analysisofbananadryingbehaviorusingtheconceptofacharacteristicdryingcurve

Theconceptofacharacteristicdryingcurveapproachnormalizesthedryingrate(Nv)relativetotheunhinderedrate(Nv).Forbanana,thereisnoclearunhindereddryingperiod,sotheinitialdryingrateissetequaltotheunhin-deredrate.AnormalizeddryingratewasdevelopedusingthefunctionssuggestedbyJannotetal.(2004),describedinEqs.(11)and(12),fortherangeofcharacteristicmois-turecontentfrom0.04to0.2andfrom0.2to1,respec-tively.Thiswasthencomparedwiththeexperimentaldata,asshowninFig.10.ThenormalizeddryingratesforcontinuousdryingmeasuredherearesimilartothefunctionssuggestedbyJannotetal.(2004),alsoforcontin-uousdrying.Numericaldifferentiationofourmoisturecontentsasfunctionsoftimecausesthescatterinthisfig-ure.Similarresultswereobtainedforbananasatdifferentdegreeofripeness,asshowninFig.11.Thismayindicatethattheeffectofthesugarcontentonthediffusionofinter-nalmoistureisinsignificant.Forintermittentdrying,therelativedryingrateisfoundtobescatteredbetweenÀ0.4

1.00s)s0.90elno0.80isne0.70mid(0.60 eta0.50r gin0.40yrd0.30e vita0.20leR0.100.000.000.200.400.600.801.00Characteristic moisture content (dimensionless)Fig.10.Therelativedryingrateasafunctionofthecharacteristicmoisturecontentforcontinuousdryingexperimentat60°C.)s1.00selnoisn0.80emid( 0.60etar gn0.40iyrd evi0.20Ripe-experimenttaPredictedleRUnripe-experiment0.000.000.200.400.600.801.00Characteristic moisture content (dimensionless)Fig.11.Therelativedryingrateasafunctionofthecharacteristicmoisturecontentforcontinuousdrying(at60°C)ofbananasatdifferentripeness.and1,asshowninFig.12.Thenegativevaluescorrespondtotheincreasesinmoisturecontentoccurredovernight.Forintermittentdrying,thenormalizeddryingratesmea-suredherearesignificantlydifferenttothosemeasuredbyJannotetal.(2004)forcontinuousdrying.

Thesimilarshapeofthenormalizeddryingcurvesforcontinuousdrying,asshowninFigs.10and11,mayindi-catethatthecharacteristicdryingcurveconceptappliesforthecontinuousdryingofbanana.However,thisconceptisnotapplicableforintermittentdrying,whichshowsdiffer-entshapeofnormalizeddryingcurveaspresentedinFig.12,comparedwiththatinFigs.10and11forcontin-uousdrying.Forcontinuousdrying,itmaybepossibletodescribetherelativedryingratebyanexponentially

342

R.Baini,T.A.G.Langrish/JournalofFoodEngineering79(2007)330–343

1.00)ssel0.80noisn0.60emid(0.40 etar g0.20niyrd0.00 evi0.600.801.00ta-0.200.000.200.40leR-0.40Characteristic moisture content (dimensionless)Fig.12.Therelativedryingrateasafunctionofthecharacteristicmoisturecontentforintermittentdryingexperimentat60°C.Thenegativerelativedryingratescorrespondtomoistureabsorptionduringtheperiodsofnoheating.decreasingdryingperiodthatisfollowedbyalineardecreasingperiod(refertoEqs.(11)and(12)),asshowninFig.10and11.However,suchadescriptionislesslikelyforintermittentdrying,whichshowsscattereddryingratesinFig.12.Thisdifferencebetweencontinuousandinter-mittentdryingsuggeststhatacharacteristicdryingcurvemaynotbeanappropriateapproachtomodelingtheinter-mittentdryingofbananas.4.Conclusions

Thekineticsofdriedbananaswasassessedusingempir-icalanddiffusionmodels,togetherwiththeconceptofacharacteristicdryingcurve.Theempiricalmodelwasfoundtosuccessfullypredictthemoisturecontentsofthedriedbananasforcontinuousdryingbutnottherelaxationofmoisturecontentsforintermittentdryingverywell.Similarresultswereobtainedwhentheexperimentaldatawereanalyzedusingtheconceptofacharacteristicdryingcurve.Theanalysisshowedthattheapplicationofthisconceptmayonlybeappropriateforcontinuousdrying,butnotforintermittentdrying.Ontheotherhand,thediffusionmodelpredictedthemoisturecontentsofbothcontinuousandintermittentdryingwell.Thismodeltakesintoaccountthedistributionofmoisturecontentandtemperaturewithinthedriedbananas.Suchacharacteristicofthediffu-sionmodelmakesitbetterintermsofphysicallydescribingthedryingofbananas,particularlyduringtherelaxationperiod,whichwasnotpredictedwellbytheempiricalmodelandtheconceptofacharacteristicdryingcurve.Theseapproachesmaybereasonableonesformodelingcontinuousdryingbutnotintermittentdrying.References

Baini,R.&Langrish,T.A.G.(2004).Dryingkineticsofbanana.In32nd

AustralasianChemicalEngineeringConference,26–29September2004,Sydney,Australia.PaperonCDROM.

Blakemore,P.(2005).CSIRO,ENSISdivision,Melbourne,Australia,

Personalcommunication.

Cano-Chauca,M.,Ramos,A.M.,Stringheta,P.C.&Pereira,A.M.(2004).Dryingcurvesandwateractivityevaluationofdriedbanana.InProceedingsofthe14thinternationaldryingsymposium(IDS2004),SaoPaulo,Brazil,22–25August2004,vol.C(pp.2013–2020).

Chua,K.J.,Mujumdar,A.S.,&Chou,S.K.(2003).Intermittentdryingofbioproducts–anoverview.BioresourceTechnology,90(3),285–295.

Chua,K.J.,Hawlader,M.N.A.,Chou,S.K.,&Ho,J.C.(2002).Onthestudyoftime-varyingtemperaturedrying–effectondryingkineticsandproductquality.DryingTechnology,20(8),1559–1577.

Chua,K.J.,Mujumdar,A.S.,Hawlader,M.N.A.,Chou,S.K.,&Ho,J.C.(2001).Convectivedryingofagriculturalproducts–effectsofcontinuousandstepwisechangeindryingairtemperature.DryingTechnology,19(8),1949–1960.

Crank,J.(1975).Themathematicsofdiffusion.Oxford,UK:ClarendonPress.

Dandamrongrak,R.,Young,G.,&Mason,R.(2002).Evaluationofvariouspre-treatmentsforthedehydrationofbananaandselectionofsuitabledryingmodels.JournalofFoodEngineering,55(2),139–146.

Demirel,D.,&Turhan,M.(2003).Air-dryingbehaviourofdwarfcavendishandgrosmichelbananaslices.JournalofFoodEngineering,59(1),1–11.

Debenedetti,P.(2003).Supercooledandglassywater.JournalofPhysics:CondensedMatter,15(45),1669–1726.

Diamante,L.M.,&Munro,P.A.(1991).Mathematicalmodellingofhotairdryingofsweetpotatoslices.InternationalJournalofFoodScienceandTechnology,26(1),99–109.

FAOstatistics(2005).Availablefromhttp://www.fao.org,accessed30May2005.

Henderson,S.M.,&Pabis,S.(1969).Graindryingtheory–temperatureeffectondryingcoefficient.JournalofAgricultureEngineeringResearch,6(3),169–174.

Hofsetz,K.&Lopes,C.C.,(2004).Crispybananaobtainedbythecombinationofhightemperatureandshorttime(HTST)andadryingprocess.InProceedingsofthe14thInternationalDryingSymposium,SaoPauloBrazil,volC(pp.1699–1706).

Jannot,Y.,Talla,A.,Nganhou,J.,&Puiggali,J.-R.(2004).Modelingofbananaconvectivedryingbythedryingcharacteristicscurve(DCC)method.DryingTechnology,22(8),1949–1968.

Karim,M.A.,&Hawlader,M.N.A.(2004).Dryingcharacteristicsofbanana:theoreticalmodellingandexperimentalvalidation.JournalofFoodEngineering,70(1),35–45.

Karathanos,V.T.(1999).Determinationofwatercontentofdriedfruitsbydryingkinetics.JournalofFoodEngineering,39(4),337–344.

Kiranoudis,C.T.,Tsami,E.,Maroulis,Z.B.,&Marinos-Kouris,D.(1997).Dryingkineticsofsomefruits.DryingTechnology,15(5),1399–1418.

Krokida,M.K.,Foundoukidis,E.,&Maroulis,Z.(2004).Dryingconstant:literaturedatacompilationforfoodstuffs.JournalofFoodEngineering,61(3),321–330.

Lewis,W.K.(1921).Therateofdryingofsolidmaterials.JournalofIndustrialandEngineeringChemistry,13(5),427–432.

Ma,Q.&,Rudolph,V.(2001).Measurementandevaluationofmoisturetransportcoefficientsofwoodbytheunsteady-statemethod.InProceedingsofthe6thworldcongressofchemicalengineering,paperonCDROM.

Maskan,M.(2000).Microwave/airandmicrowavefinishdryingofbanana.JournalofFoodEngineering,44(2),71–78.

Masuko,T.,Minami,A.,Iwasaki,N.,&Majima,T.(2005).Carbohydrateanalaysisbyaphenol-sulfuricacidmethodinmicroplatformat.AnalyticalBiochemistry,339(1),69–72.

Mayor,L.,&Sereno,A.M.(2004).Modellingshrinkageduringconvectivedryingoffoodmaterials:areview.JournalofFoodEngineering,61(3),373–386.

Nogueira,R.&,Park,K.J.(1992).Dryingparameterstoobtain‘banana-passa’.InProceedingsofthe8thinternationaldryingsymposium,Montreal,Canada,PartA(pp.874–883).

R.Baini,T.A.G.Langrish/JournalofFoodEngineering79(2007)330–343

343

O’Callaghan,J.R.,Menzies,D.J.,&Bailey,P.H.(1971).Digital

simulationofagriculturaldryerperformance.JournalofAgriculturalEngineeringResearch,16(3),223–244.

Overhults,D.D.,White,G.M.,Hamilton,M.E.,&Ross,I.J.(1973).

Dryingsoybeanswithheatedair.TransactionsoftheASAE,16(1),112–113.

Page,G.(1949).Factorsinfluencingthemaximumratesofair-dryingshelled

corninthinlayers.M.S.Thesis,PurdueUniversity:Lafayatte.

Phoungchandang,S.,&Woods,J.L.(2000).Moisturediffusionand

desorptionisothermsforbanana.JournalofFoodScience,65(4),651–657.

Queiroz,M.R.,&Nebra,S.A.(2001).Theoreticalandexperimental

analysisofthedryingkineticsofbananas.JournalofFoodEngineering,47(2),127–132.

Sousa,W.A.,&MarsaioliJr.,A.,(2004).Dryingofbananasassisted

bymicrowaveenergy.InProceedingsofthe14thinternationaldryingsymposium,SaoPauloBrazil,22–25August,volC(pp.1946–1954).

Sharaf-Eldeen,Y.I.,Hamdy,M.Y.&Blaisdell,J.L.(1979).Mathemat-icaldescriptionofdryingfullyexposedgrains.ASAEPaperNo:79-3034,St.Joseph,MI:ASAE.

Sharaf-Eldeen,Y.I.,Hamdy,M.Y.,&Blaisdell,J.L.(1980).Amodelfor

earcorndrying.TransactionsoftheASAE,23(5),1261–1265.

Strumillo,C.,&Kudra,T.(1986).Drying:principles,applications,and

design.NewYork:GordonandBreachScience.

Talla,A.,Jannot,Y.,Kapseu,C.,&Etude,J.(2001).Expe

´rimentaleetmode

´lisationdelacine´tiquedese´chagedesfruitstropicaux:application`a

labananaetalamangue.ScienceDesAliments,21(5),499–518.Togrul,I.T.,&Pehlivan,D.(2004).Modellingofthinlayerdrying

kineticsofsomefruitsunderopen-airsundryingprocess.JournalofFoodEngineering,65(3),413–425.

Verma,L.R.,Bucklin,R.A.,Endan,J.B.,&Wratten,F.T.(1985).

Effectsofdryingairparametersonricedryingmodels.TransactionsoftheASAE,28(1),296–301.

Wan,J.,&Langrish,T.A.G.(1995).Anumericalsimulationforsolving

thediffusionequationsinthedryinghardwoodtimber.DryingTechnology,13(3),783–799.

Wang,C.Y.&Singh,R.P.(1978).Asinglelayerdryingequationfor

roughrice.ASAEPaperNo:78-3001.St.Joseph,MI:ASAE.

Yagciolu,A.,Degirmencioglu,A.&Cagatay,F.(1999).Dryingcharac-teristicsoflaurelleavesunderdifferentconditions.InProceedingsofthe7thinternationalcongressonagriculturalmechanizationandenergy,26–27May,Adana,Turkey(pp.565–569).

Zogzas,N.P.,Maroulis,Z.B.,&Marinos-Kouris,D.(1996).Moisture

diffusivitydatacompilationinfoodstuffs.DryingTechnology,14(10),2225–2253.

因篇幅问题不能全部显示,请点此查看更多更全内容